IDEAS home Printed from https://ideas.repec.org/a/spr/jeicoo/v12y2017i3d10.1007_s11403-016-0178-8.html
   My bibliography  Save this article

The effect of structural disparities on knowledge diffusion in networks: an agent-based simulation model

Author

Listed:
  • Matthias Mueller

    (University of Hohenheim)

  • Kristina Bogner

    (University of Hohenheim)

  • Tobias Buchmann

    (University of Hohenheim)

  • Muhamed Kudic

    (Stifterverband
    University of Bremen)

Abstract

We apply an agent-based simulation approach to explore how and why typical network characteristics affect overall knowledge diffusion properties. To accomplish this task, we employ an agent-based simulation approach (ABM) which is based on a “barter trade” knowledge diffusion process. Our findings indicate that the overall degree distribution significantly affects a network’s knowledge diffusion performance. Nodes with a below-average number of links prove to be one of the bottlenecks for an efficient transmission of knowledge throughout the analysed networks. This indicates that diffusion-inhibiting overall network structures are the result of the myopic linking strategies of the actors at the micro level. Finally, we implement policy experiments in our simulation environment in order to analyse consequences of selected policy interventions. This complements previous research knowledge on diffusion processes in innovation networks.

Suggested Citation

  • Matthias Mueller & Kristina Bogner & Tobias Buchmann & Muhamed Kudic, 2017. "The effect of structural disparities on knowledge diffusion in networks: an agent-based simulation model," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 12(3), pages 613-634, October.
  • Handle: RePEc:spr:jeicoo:v:12:y:2017:i:3:d:10.1007_s11403-016-0178-8
    DOI: 10.1007/s11403-016-0178-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11403-016-0178-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11403-016-0178-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Malerba, Franco, 2007. "Innovation and the dynamics and evolution of industries: Progress and challenges," International Journal of Industrial Organization, Elsevier, vol. 25(4), pages 675-699, August.
    2. Robin Cowan & Nicolas Jonard, 2007. "Structural holes, innovation and the distribution of ideas," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 2(2), pages 93-110, December.
    3. Joel A. C. Baum & Tony Calabrese & Brian S. Silverman, 2000. "Don't go it alone: alliance network composition and startups' performance in Canadian biotechnology," Strategic Management Journal, Wiley Blackwell, vol. 21(3), pages 267-294, March.
    4. Cowan, Robin & Jonard, Nicolas, 2004. "Network structure and the diffusion of knowledge," Journal of Economic Dynamics and Control, Elsevier, vol. 28(8), pages 1557-1575, June.
    5. Gilsing, Victor & Nooteboom, Bart & Vanhaverbeke, Wim & Duysters, Geert & van den Oord, Ad, 2008. "Network embeddedness and the exploration of novel technologies: Technological distance, betweenness centrality and density," Research Policy, Elsevier, vol. 37(10), pages 1717-1731, December.
    6. Savin, Ivan & Egbetokun, Abiodun, 2016. "Emergence of innovation networks from R&D cooperation with endogenous absorptive capacity," Journal of Economic Dynamics and Control, Elsevier, vol. 64(C), pages 82-103.
    7. Piergiuseppe Morone & Richard Taylor, 2004. "Knowledge diffusion dynamics and network properties of face-to-face interactions," Journal of Evolutionary Economics, Springer, vol. 14(3), pages 327-351, July.
    8. Muhamed Kudic & Wilfried Ehrenfeld & Toralf Pusch, 2015. "On the trail of core–periphery patterns in innovation networks: measurements and new empirical findings from the German laser industry," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 55(1), pages 187-220, October.
    9. Andrea Morone & Piergiuseppe Morone & Richard Taylor, 2007. "A laboratory experiment of knowledge diffusion dynamics," Springer Books, in: Uwe Cantner & Franco Malerba (ed.), Innovation, Industrial Dynamics and Structural Transformation, pages 283-302, Springer.
    10. Sverre J. Herstad & Tore Sandven & Espen Solberg, 2013. "Location, education and enterprise growth," Applied Economics Letters, Taylor & Francis Journals, vol. 20(10), pages 1019-1022, July.
    11. Toby E. Stuart, 2000. "Interorganizational alliances and the performance of firms: a study of growth and innovation rates in a high‐technology industry," Strategic Management Journal, Wiley Blackwell, vol. 21(8), pages 791-811, August.
    12. Melissa A. Schilling & Corey C. Phelps, 2007. "Interfirm Collaboration Networks: The Impact of Large-Scale Network Structure on Firm Innovation," Management Science, INFORMS, vol. 53(7), pages 1113-1126, July.
    13. Horst Hanusch & Andreas Pyka, 2007. "Principles of Neo-Schumpeterian Economics," Cambridge Journal of Economics, Cambridge Political Economy Society, vol. 31(2), pages 275-289, March.
    14. Malerba, Franco, 1992. "Learning by Firms and Incremental Technical Change," Economic Journal, Royal Economic Society, vol. 102(413), pages 845-859, July.
    15. Levén, Per & Holmström, Jonny & Mathiassen, Lars, 2014. "Managing research and innovation networks: Evidence from a government sponsored cross-industry program," Research Policy, Elsevier, vol. 43(1), pages 156-168.
    16. Lin, Min & Li, Nan, 2010. "Scale-free network provides an optimal pattern for knowledge transfer," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(3), pages 473-480.
    17. Gino Cattani & Simone Ferriani, 2008. "A Core/Periphery Perspective on Individual Creative Performance: Social Networks and Cinematic Achievements in the Hollywood Film Industry," Organization Science, INFORMS, vol. 19(6), pages 824-844, December.
    18. Robert M. Grant & Charles Baden‐Fuller, 2004. "A Knowledge Accessing Theory of Strategic Alliances," Journal of Management Studies, Wiley Blackwell, vol. 41(1), pages 61-84, January.
    19. Franco Malerba, 2007. "Innovation and the evolution of industries," Springer Books, in: Uwe Cantner & Franco Malerba (ed.), Innovation, Industrial Dynamics and Structural Transformation, pages 7-27, Springer.
    20. Lee Fleming & Charles King & Adam I. Juda, 2007. "Small Worlds and Regional Innovation," Organization Science, INFORMS, vol. 18(6), pages 938-954, December.
    21. Piergiuseppe Morone & Richard Taylor, 2010. "Knowledge Diffusion and Innovation," Books, Edward Elgar Publishing, number 13143.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Houxing Tang & Zhenzhong Ma & Jiuling Xiao & Lei Xiao, 2020. "Toward a more Efficient Knowledge Network in Innovation Ecosystems: A Simulated Study on Knowledge Management," Sustainability, MDPI, vol. 12(16), pages 1-18, August.
    2. Michael P. Schlaile & Johannes Zeman & Matthias Mueller, 2021. "It’s a Match! Simulating Compatibility-based Learning in a Network of Networks," Economic Complexity and Evolution, in: Michael P. Schlaile (ed.), Memetics and Evolutionary Economics, chapter 0, pages 99-140, Springer.
    3. Ivan Savin, 2021. "On optimal regimes of knowledge exchange: a model of recombinant growth and firm networks," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 16(3), pages 497-527, July.
    4. Juana Castro & Stefan Drews & Filippos Exadaktylos & Joël Foramitti & Franziska Klein & Théo Konc & Ivan Savin & Jeroen van den Bergh, 2020. "A review of agent‐based modeling of climate‐energy policy," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 11(4), July.
    5. Yun, JinHyo Joseph & Ahn, Heung Ju & Lee, Doo Seok & Park, Kyung Bae & Zhao, Xiaofei, 2022. "Inter-rationality; Modeling of bounded rationality in open innovation dynamics," Technological Forecasting and Social Change, Elsevier, vol. 184(C).
    6. Zhang, Qi & Wu, Xifeng & Chen, Yu, 2022. "Is economic crisis an opportunity for realizing the low-carbon transition? A simulation study on the interaction between economic cycle and energy regulation policy," Energy Policy, Elsevier, vol. 168(C).
    7. Bogner, Kristina, 2019. "Knowledge networks in the German bioeconomy: Network structure of publicly funded R&D networks," Hohenheim Discussion Papers in Business, Economics and Social Sciences 03-2019, University of Hohenheim, Faculty of Business, Economics and Social Sciences.
    8. Wu, Haizhen & Han, Zhao'an & Zhou, Yong, 2021. "Optimal degree of openness in open innovation: A perspective from knowledge acquisition & knowledge leakage," Technology in Society, Elsevier, vol. 67(C).
    9. Muhamed Kudic & Matthias Müller & Tobias Buchmann & Andreas Pyka & Jutta Günther, 2021. "Network dynamics, economic transition, and policy design—an introduction," Review of Evolutionary Political Economy, Springer, vol. 2(1), pages 1-8, April.
    10. Lei Xu & Ronggui Ding & Lei Wang, 2022. "How to facilitate knowledge diffusion in collaborative innovation projects by adjusting network density and project roles," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(3), pages 1353-1379, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bogner, Kristina, 2019. "Knowledge networks in the German bioeconomy: Network structure of publicly funded R&D networks," Hohenheim Discussion Papers in Business, Economics and Social Sciences 03-2019, University of Hohenheim, Faculty of Business, Economics and Social Sciences.
    2. Michael P. Schlaile & Johannes Zeman & Matthias Mueller, 2021. "It’s a Match! Simulating Compatibility-based Learning in a Network of Networks," Economic Complexity and Evolution, in: Michael P. Schlaile (ed.), Memetics and Evolutionary Economics, chapter 0, pages 99-140, Springer.
    3. Buchmann, Tobias & Hain, Daniel & Kudic, Muhamed & Müller, Matthias, 2014. "Exploring the Evolution of Innovation Networks in Science-driven and Scale-intensive Industries: New Evidence from a Stochastic Actor-based Approach," IWH Discussion Papers 1/2014, Halle Institute for Economic Research (IWH).
    4. Michael Fritsch & Muhamed Kudic, 2022. "Micro dynamics and macro stability in inventor networks," The Journal of Technology Transfer, Springer, vol. 47(2), pages 353-382, April.
    5. Ivan Savin, 2021. "On optimal regimes of knowledge exchange: a model of recombinant growth and firm networks," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 16(3), pages 497-527, July.
    6. Uwe Cantner & Holger Graf, 2011. "Innovation Networks: Formation, Performance and Dynamics," Chapters, in: Cristiano Antonelli (ed.), Handbook on the Economic Complexity of Technological Change, chapter 15, Edward Elgar Publishing.
    7. Gräbner, Claudius & Heinrich, Torsten & Kudic, Muhamed, 2016. "Structuration processes in complex dynamic systems - an overview and reassessment," MPRA Paper 69095, University Library of Munich, Germany.
    8. Kudic, Muhamed & Bönisch, Peter & Dominguez Lacasa, Iciar, 2010. "Analyzing Innovation Drivers in the German Laser Industry: the Role of Positioning in the Social and Geographical Space," IWH Discussion Papers 22/2010, Halle Institute for Economic Research (IWH).
    9. Müller, Matthias & Kudic, Muhamed & Vermeulen, Ben, 2021. "The influence of the structure of technological knowledge on inter-firm R&D collaboration and knowledge discovery: An agent-based simulation approach," Journal of Business Research, Elsevier, vol. 129(C), pages 570-579.
    10. Gupeng Zhang & Xiao Wang & Hongbo Duan, 2020. "Obscure but important: examining the indirect effects of alliance networks in exploratory and exploitative innovation paradigms," Scientometrics, Springer;Akadémiai Kiadó, vol. 124(3), pages 1745-1764, September.
    11. Savin, Ivan & Egbetokun, Abiodun, 2016. "Emergence of innovation networks from R&D cooperation with endogenous absorptive capacity," Journal of Economic Dynamics and Control, Elsevier, vol. 64(C), pages 82-103.
    12. Takashi Iino & Hiroyasu Inoue & Yukiko U. Saito & Yasuyuki Todo, 2021. "How does the global network of research collaboration affect the quality of innovation?," The Japanese Economic Review, Springer, vol. 72(1), pages 5-48, January.
    13. den Hamer, Pieter & Frenken, Koen, 2021. "A network-based model of exploration and exploitation," Journal of Business Research, Elsevier, vol. 129(C), pages 589-599.
    14. Mohamad Alghamdi, 2020. "Economics Performance Under Endogenous Knowledge Spillovers," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 27(2), pages 175-192, June.
    15. Hohberger, Jan & Kruger, Heidi & Almeida, Paul, 2020. "Does separation hurt? The impact of premature termination of R&D alliances on knowledge acquisition and innovation," Research Policy, Elsevier, vol. 49(6).
    16. Gupeng Zhang & Jiancheng Guan & Xielin Liu, 2014. "The impact of small world on patent productivity in China," Scientometrics, Springer;Akadémiai Kiadó, vol. 98(2), pages 945-960, February.
    17. Wang, Chun-Hsien & Chang, Ching-Hsing & Shen, George C., 2015. "The effect of inbound open innovation on firm performance: Evidence from high-tech industry," Technological Forecasting and Social Change, Elsevier, vol. 99(C), pages 222-230.
    18. Beaudry, Catherine & Allaoui, Sedki, 2012. "Impact of public and private research funding on scientific production: The case of nanotechnology," Research Policy, Elsevier, vol. 41(9), pages 1589-1606.
    19. Johannes van Der Pol, 2015. "Structural dynamics of the French aerospace sector: A network analysis," Working Papers hal-01284993, HAL.
    20. Torben Klarl, 2014. "Knowledge diffusion and knowledge transfer revisited: two sides of the medal," Journal of Evolutionary Economics, Springer, vol. 24(4), pages 737-760, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jeicoo:v:12:y:2017:i:3:d:10.1007_s11403-016-0178-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.