IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v8y2015i1p3-d61052.html
   My bibliography  Save this article

Innovative Carbon Allowance Allocation Policy for the Shenzhen Emission Trading Scheme in China

Author

Listed:
  • Bin Ye

    (Research Center on Modern Logistics, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China
    These authors contributed equally to this work.)

  • Jingjing Jiang

    (South University of Science and Technology of China, University Town, Nan Shan District, Shenzhen 518055, China
    Environmental Science and Engineering Center, Harbin Institute of Technology Shenzhen Graduate School, Shenzhen 518055, China)

  • Lixin Miao

    (Research Center on Modern Logistics, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China
    These authors contributed equally to this work.)

  • Ji Li

    (Research Center on Modern Logistics, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China
    Environmental Science and Engineering Center, Harbin Institute of Technology Shenzhen Graduate School, Shenzhen 518055, China)

  • Yang Peng

    (Research Center on Modern Logistics, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China)

Abstract

The initial allocation of tradable carbon emission allowances is among the most contentious issues in developing an emission trading scheme (ETS). China faces serious dilemmas of system complexity and information incompleteness and asymmetry in allocating carbon allowance among enterprises. As one of the pilot ETS regions, Shenzhen has launched the first regional cap-and-trade ETS (SZ ETS) in China. Adhering to the overall plan and classification analysis, SZ ETS intends to solve the aforementioned dilemmas by developing innovative allowance allocation policies. A fundamental principle is to allocate allowances based on carbon intensity and actual output, according to which a two-step allocation procedure is constructed. A competitive game mechanism is introduced for allowance allocation among manufacturing enterprises. Empirical results indicate the following: (1) Carbon allowance allocation based on carbon intensity and actual output can mitigate carbon emission growth by reducing CO 2 emitted per unit output, and, thus, buffer the shocks of unexpected economic fluctuations to ETS stability; (2) Competitive game allocation may contribute to improving the use of scattered information to enhance the efficiency of information and emission resource allocation. Exploring SZ ETS may provide a reference for formulating future national carbon allowance allocation policies in China and other developing regions.

Suggested Citation

  • Bin Ye & Jingjing Jiang & Lixin Miao & Ji Li & Yang Peng, 2015. "Innovative Carbon Allowance Allocation Policy for the Shenzhen Emission Trading Scheme in China," Sustainability, MDPI, vol. 8(1), pages 1-23, December.
  • Handle: RePEc:gam:jsusta:v:8:y:2015:i:1:p:3-:d:61052
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/8/1/3/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/8/1/3/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Stephen Lecourt & Clément Pallière & Oliver Sartor, 2013. "The impact of emissions-performance benchmarking on free allocations in EU ETS Phase 3," RSCAS Working Papers 2013/17, European University Institute.
    2. Fudenberg, Drew & Levine, David, 1998. "Learning in games," European Economic Review, Elsevier, vol. 42(3-5), pages 631-639, May.
    3. Roberts, Michael R., 2015. "The role of dynamic renegotiation and asymmetric information in financial contracting," Journal of Financial Economics, Elsevier, vol. 116(1), pages 61-81.
    4. Enrico Guzzini & Antonio Palestrini, 2009. "The empty core in the Coase theorem: a critical assessment," Economics Bulletin, AccessEcon, vol. 29(4), pages 3095-3103.
    5. Bushnell, James & Chen, Yihsu, 2012. "Allocation and leakage in regional cap-and-trade markets for CO2," Resource and Energy Economics, Elsevier, vol. 34(4), pages 647-668.
    6. Sterner, Thomas & Muller, Adrian, 2006. "Output and Abatement Effects of Allocation Readjustment in Permit Trade," RFF Working Paper Series dp-06-49, Resources for the Future.
    7. Azzoni, Carlos R. & Isai, Joao Y., 1994. "Estimating the costs of environmental protection in Brazil," Ecological Economics, Elsevier, vol. 11(2), pages 127-133, November.
    8. Claudia Kemfert & Wietze Lise & Richard Tol, 2004. "Games of Climate Change with International Trade," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 28(2), pages 209-232, June.
    9. Zhu Liu & Dabo Guan & Douglas Crawford-Brown & Qiang Zhang & Kebin He & Jianguo Liu, 2013. "A low-carbon road map for China," Nature, Nature, vol. 500(7461), pages 143-145, August.
    10. Yu, Shiwei & Wei, Yi-Ming & Wang, Ke, 2014. "Provincial allocation of carbon emission reduction targets in China: An approach based on improved fuzzy cluster and Shapley value decomposition," Energy Policy, Elsevier, vol. 66(C), pages 630-644.
    11. Goulder, Lawrence H. & Hafstead, Marc A.C. & Dworsky, Michael, 2010. "Impacts of alternative emissions allowance allocation methods under a federal cap-and-trade program," Journal of Environmental Economics and Management, Elsevier, vol. 60(3), pages 161-181, November.
    12. R. H. Coase, 2013. "The Problem of Social Cost," Journal of Law and Economics, University of Chicago Press, vol. 56(4), pages 837-877.
    13. Perdan, Slobodan & Azapagic, Adisa, 2011. "Carbon trading: Current schemes and future developments," Energy Policy, Elsevier, vol. 39(10), pages 6040-6054, October.
    14. Bernard, A. & Haurie, A. & Vielle, M. & Viguier, L., 2008. "A two-level dynamic game of carbon emission trading between Russia, China, and Annex B countries," Journal of Economic Dynamics and Control, Elsevier, vol. 32(6), pages 1830-1856, June.
    15. Lucas, Robert E, Jr, 1986. "Adaptive Behavior and Economic Theory," The Journal of Business, University of Chicago Press, vol. 59(4), pages 401-426, October.
    16. Kreps, David M. & Wilson, Robert, 1982. "Reputation and imperfect information," Journal of Economic Theory, Elsevier, vol. 27(2), pages 253-279, August.
    17. Jensen, Jesper & Rasmussen, Tobias N., 2000. "Allocation of CO2 Emissions Permits: A General Equilibrium Analysis of Policy Instruments," Journal of Environmental Economics and Management, Elsevier, vol. 40(2), pages 111-136, September.
    18. Frisvold, George B. & Caswell, Margriet F., 2000. "Transboundary water management: Game-theoretic lessons for projects on the US-Mexico border," Agricultural Economics, Blackwell, vol. 24(1), pages 101-111, December.
    19. Ian W.H. Parry & Roberton C. Williams III & Lawrence H. Goulder, 2002. "When Can Carbon Abatement Policies Increase Welfare? The Fundamental Role of Distorted Factor Markets," Chapters, in: Lawrence H. Goulder (ed.), Environmental Policy Making in Economies with Prior Tax Distortions, chapter 25, pages 471-503, Edward Elgar Publishing.
    20. José M. Marín & Rohit Rahi, 2000. "Information Revelation and Market Incompleteness," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 67(3), pages 563-579.
    21. Shiro Takeda & Toshi Arimura & Hanae Tamechika & Carolyn Fischer & Alan Fox, 2014. "Output-based allocation of emissions permits for mitigating the leakage and competitiveness issues for the Japanese economy," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 16(1), pages 89-110, January.
    22. Burtraw, Dallas & Palmer, Karen & Bharvirkar, Ranjit & Paul, Anthony, 2002. "The Effect on Asset Values of the Allocation of Carbon Dioxide Emission Allowances," The Electricity Journal, Elsevier, vol. 15(5), pages 51-62, June.
    23. Wang, Jianhui & Zhou, Zhi & Botterud, Audun, 2011. "An evolutionary game approach to analyzing bidding strategies in electricity markets with elastic demand," Energy, Elsevier, vol. 36(5), pages 3459-3467.
    24. Stephen Lecourt & Clement Palliere & Oliver Sartor, 2013. "Free allocations in EU ETS Phase 3: The impact of emissions-performance benchmarking for carbonintensive industry," Working Papers 1302, Chaire Economie du climat.
    25. Robert N. Stavins, 1998. "What Can We Learn from the Grand Policy Experiment? Lessons from SO2 Allowance Trading," Journal of Economic Perspectives, American Economic Association, vol. 12(3), pages 69-88, Summer.
    26. Burtraw, Dallas & Palmer, Karen L. & Bharvirkar, Ranjit & Paul, Anthony, 2001. "The Effect of Allowance Allocation on the Cost of Carbon Emission Trading," Discussion Papers 10536, Resources for the Future.
    27. Carboni, Giacomo & Ellison, Martin, 2011. "Inflation and output volatility under asymmetric incomplete information," Journal of Economic Dynamics and Control, Elsevier, vol. 35(1), pages 40-51, January.
    28. d'Aspremont, Claude & Gerard-Varet, Louis-Andre, 1979. "Incentives and incomplete information," Journal of Public Economics, Elsevier, vol. 11(1), pages 25-45, February.
    29. Ahman, Markus & Burtraw, Dallas & Kruger, Joseph & Zetterberg, Lars, 2007. "A Ten-Year Rule to guide the allocation of EU emission allowances," Energy Policy, Elsevier, vol. 35(3), pages 1718-1730, March.
    30. Jos Sijm & Karsten Neuhoff & Yihsu Chen, 2006. "CO 2 cost pass-through and windfall profits in the power sector," Climate Policy, Taylor & Francis Journals, vol. 6(1), pages 49-72, January.
    31. Binmore, Kenneth G. & Samuelson, Larry, 1992. "Evolutionary stability in repeated games played by finite automata," Journal of Economic Theory, Elsevier, vol. 57(2), pages 278-305, August.
    32. Drew Fudenberg & David K. Levine, 1998. "The Theory of Learning in Games," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262061945, December.
    33. Edwards, T. Huw. & Hutton, John P., 2001. "Allocation of carbon permits within a country: a general equilibrium analysis of the United Kingdom," Energy Economics, Elsevier, vol. 23(4), pages 371-386, July.
    34. Aumann, Robert J., 1997. "Rationality and Bounded Rationality," Games and Economic Behavior, Elsevier, vol. 21(1-2), pages 2-14, October.
    35. Breton, Michele & Zaccour, Georges & Zahaf, Mehdi, 2006. "A game-theoretic formulation of joint implementation of environmental projects," European Journal of Operational Research, Elsevier, vol. 168(1), pages 221-239, January.
    36. Stephen Morris & Hyun Song Shin, 2002. "Social Value of Public Information," American Economic Review, American Economic Association, vol. 92(5), pages 1521-1534, December.
    37. Dormady, Noah C., 2013. "Market power in cap-and-trade auctions: A Monte Carlo approach," Energy Policy, Elsevier, vol. 62(C), pages 788-797.
    38. Pearlman, Joseph, 1986. "Diverse information and rational expectations models," Journal of Economic Dynamics and Control, Elsevier, vol. 10(1-2), pages 333-338, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hong, Zhaofu & Chu, Chengbin & Zhang, Linda L. & Yu, Yugang, 2017. "Optimizing an emission trading scheme for local governments: A Stackelberg game model and hybrid algorithm," International Journal of Production Economics, Elsevier, vol. 193(C), pages 172-182.
    2. Ye, Bin & Yang, Peng & Jiang, Jingjing & Miao, Lixin & Shen, Bo & Li, Ji, 2017. "Feasibility and economic analysis of a renewable energy powered special town in China," Resources, Conservation & Recycling, Elsevier, vol. 121(C), pages 40-50.
    3. Jingru Huang & Jie Shen & Lu Miao, 2020. "Carbon Emissions Trading and Sustainable Development in China: Empirical Analysis Based on the Coupling Coordination Degree Model," IJERPH, MDPI, vol. 18(1), pages 1-13, December.
    4. Chune Young Chung & Minkyu Jeong & Jason Young, 2018. "The Price Determinants of the EU Allowance in the EU Emissions Trading Scheme," Sustainability, MDPI, vol. 10(11), pages 1-29, November.
    5. Xun Zhang & Yuehui Ma & Bin Ye & Zhang-Ming Chen & Ling Xiong, 2016. "Feasibility Analyses of Developing Low Carbon City with Hybrid Energy Systems in China: The Case of Shenzhen," Sustainability, MDPI, vol. 8(5), pages 1-16, May.
    6. Baochen Yang & Chuanze Liu & Yunpeng Su & Xin Jing, 2017. "The Allocation of Carbon Intensity Reduction Target by 2020 among Industrial Sectors in China," Sustainability, MDPI, vol. 9(1), pages 1-19, January.
    7. Khaqqi, Khamila Nurul & Sikorski, Janusz J. & Hadinoto, Kunn & Kraft, Markus, 2018. "Incorporating seller/buyer reputation-based system in blockchain-enabled emission trading application," Applied Energy, Elsevier, vol. 209(C), pages 8-19.
    8. Jiang, Jingjing & Xie, Dejun & Ye, Bin & Shen, Bo & Chen, Zhanming, 2016. "Research on China’s cap-and-trade carbon emission trading scheme: Overview and outlook," Applied Energy, Elsevier, vol. 178(C), pages 902-917.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Philippe Quirion, 2022. "Output-based allocation and output-based rebates: a survey," Chapters, in: Handbook on Trade Policy and Climate Change, chapter 7, pages 94-107, Edward Elgar Publishing.
    2. Dallas Burtraw & Karen Palmer, 2008. "Compensation rules for climate policy in the electricity sector," Journal of Policy Analysis and Management, John Wiley & Sons, Ltd., vol. 27(4), pages 819-847.
    3. Paul, Anthony & Burtraw, Dallas & Palmer, Karen, 2008. "Compensation for Electricity Consumers Under a U.S. CO2 Emissions Cap," RFF Working Paper Series dp-08-25, Resources for the Future.
    4. Burtraw, Dallas & Evans, David A., 2009. "Tradable rights to emit air pollution," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 53(1), pages 1-26.
    5. Bréchet, Thierry & Jouvet, Pierre-André & Rotillon, Gilles, 2013. "Tradable pollution permits in dynamic general equilibrium: Can optimality and acceptability be reconciled?," Ecological Economics, Elsevier, vol. 91(C), pages 89-97.
    6. Jiasen Sun & Yelin Fu & Xiang Ji & Ray Y. Zhong, 2017. "Allocation of emission permits using DEA-game-theoretic model," Operational Research, Springer, vol. 17(3), pages 867-884, October.
    7. Karen Palmer & Dallas Burtraw & Danny Kahn, 2006. "Simple rules for targeting CO 2 allowance allocations to compensate firms," Climate Policy, Taylor & Francis Journals, vol. 6(4), pages 477-493, July.
    8. Zetterberg, Lars, 2014. "Benchmarking in the European Union Emissions Trading System: Abatement incentives," Energy Economics, Elsevier, vol. 43(C), pages 218-224.
    9. Shoufeng Ji & Qi Sun, 2017. "Low-Carbon Planning and Design in B&R Logistics Service: A Case Study of an E-Commerce Big Data Platform in China," Sustainability, MDPI, vol. 9(11), pages 1-27, November.
    10. Ralf Martin & Mirabelle Mu?ls & Laure B. de Preux & Ulrich J. Wagner, 2014. "Industry Compensation under Relocation Risk: A Firm-Level Analysis of the EU Emissions Trading Scheme," American Economic Review, American Economic Association, vol. 104(8), pages 2482-2508, August.
    11. Yun-Fei Yao & Qiao-Mei Liang, 2016. "Approaches to carbon allowance allocation in China: a computable general equilibrium analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(1), pages 333-351, November.
    12. Alexander Smajgl, 2004. "Modelling the effect of learning and evolving rules on the use of common-pool resources," Computing in Economics and Finance 2004 178, Society for Computational Economics.
    13. Alexander Smajgl, 2007. "Modelling evolving rules for the use of common-pool resources in an agent-based model," Interdisciplinary Description of Complex Systems - scientific journal, Croatian Interdisciplinary Society Provider Homepage: http://indecs.eu, vol. 5(2), pages 56-80.
    14. Katrin Rehdanz & Richard S.J. Tol, 2004. "On Multi-Period Allocation Of Tradable Emission Permits," Working Papers FNU-43, Research unit Sustainability and Global Change, Hamburg University, revised Apr 2004.
    15. Ekmekci, Mehmet & Gossner, Olivier & Wilson, Andrea, 2012. "Impermanent types and permanent reputations," Journal of Economic Theory, Elsevier, vol. 147(1), pages 162-178.
    16. Kverndokk, Snorre & Rose, Adam, 2008. "Equity and Justice in Global Warming Policy," International Review of Environmental and Resource Economics, now publishers, vol. 2(2), pages 135-176, October.
    17. Yanbin Li & Zhen Li & Min Wu & Feng Zhang & Gejirifu De, 2018. "Regional-Level Allocation of CO 2 Emission Permits in China: Evidence from the Boltzmann Distribution Method," Sustainability, MDPI, vol. 10(8), pages 1-16, July.
    18. Trabelsi, Emna & Hichri, Walid, 2021. "Central Bank Transparency with (semi-)public Information: Laboratory Experiments," Journal of Behavioral and Experimental Economics (formerly The Journal of Socio-Economics), Elsevier, vol. 90(C).
    19. Jiang, Jingjing & Xie, Dejun & Ye, Bin & Shen, Bo & Chen, Zhanming, 2016. "Research on China’s cap-and-trade carbon emission trading scheme: Overview and outlook," Applied Energy, Elsevier, vol. 178(C), pages 902-917.
    20. Burtraw, Dallas & Palmer, Karen & Bharvirkar, Ranjit & Paul, Anthony, 2001. "The Effect of Allowance Allocation on the Cost of Carbon Emission Trading," RFF Working Paper Series dp-01-30-, Resources for the Future.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:8:y:2015:i:1:p:3-:d:61052. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.