IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v8y2016i5p452-d69571.html
   My bibliography  Save this article

Feasibility Analyses of Developing Low Carbon City with Hybrid Energy Systems in China: The Case of Shenzhen

Author

Listed:
  • Xun Zhang

    (Key Laboratory of Road and Traffic Engineering of the Ministry of Education, Tongji University, Shanghai 201804, China
    These authors contributed equally to this~work.)

  • Yuehui Ma

    (Scientific Research Academy, Shanghai Maritime University, Shanghai 201306, China
    These authors contributed equally to this~work.)

  • Bin Ye

    (Energy Analysis and Environmental Impacts Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
    Research Center on Modern Logistics, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China
    These authors contributed equally to this~work.)

  • Zhang-Ming Chen

    (Department of Energy Economics, School of Economics, Renmin University of China, Beijing 100872, China)

  • Ling Xiong

    (Institutes for International Studies, CICTSMR, Wuhan University, Wuhan 430072, China)

Abstract

As the largest carbon emission source in China, the power sector grows rapidly owing to the country’s unprecedented urbanization and industrialization processes. In order to explore a low carbon urbanization pathway by reducing carbon emissions of the power sector, the Chinese government launched an international low carbon city (ILCC) project in Shenzhen. This paper presents a feasibility analysis on the potential hybrid energy system based on local renewable energy resources and electricity demand estimation over the three planning stages of the ILCC project. Wind power, solar power, natural gas and the existing power grid are components considered in the hybrid energy system. The simulation results indicate that the costs of energy in the three planning stages are 0.122, 0.105 and 0.141 $/kWh, respectively, if external wind farms and pumped storage hydro stations (PSHSs) exist. The optimization results reveal that the carbon reduction rates are 46.81%, 62.99% and 75.76% compared with the Business as Usual scenarios. The widely distributed water reservoirs in Shenzhen provide ideal conditions to construct PSHS, which is crucial in enhancing renewable energy utilization.

Suggested Citation

  • Xun Zhang & Yuehui Ma & Bin Ye & Zhang-Ming Chen & Ling Xiong, 2016. "Feasibility Analyses of Developing Low Carbon City with Hybrid Energy Systems in China: The Case of Shenzhen," Sustainability, MDPI, vol. 8(5), pages 1-16, May.
  • Handle: RePEc:gam:jsusta:v:8:y:2016:i:5:p:452-:d:69571
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/8/5/452/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/8/5/452/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhu Liu & Dabo Guan & Douglas Crawford-Brown & Qiang Zhang & Kebin He & Jianguo Liu, 2013. "A low-carbon road map for China," Nature, Nature, vol. 500(7461), pages 143-145, August.
    2. He, Gang & Kammen, Daniel M., 2016. "Where, when and how much solar is available? A provincial-scale solar resource assessment for China," Renewable Energy, Elsevier, vol. 85(C), pages 74-82.
    3. Wang, Zhaohua & Zhang, Bin & Zhang, Yixiang, 2012. "Determinants of public acceptance of tiered electricity price reform in China: Evidence from four urban cities," Applied Energy, Elsevier, vol. 91(1), pages 235-244.
    4. Browne, David & O'Regan, Bernadette & Moles, Richard, 2009. "Use of ecological footprinting to explore alternative domestic energy and electricity policy scenarios in an Irish city-region," Energy Policy, Elsevier, vol. 37(6), pages 2205-2213, June.
    5. Xiang Zhou & Xiaohong Chen & Tianran Zhang, 2016. "Impact of Megacity Jobs-Housing Spatial Mismatch on Commuting Behaviors: A Case Study on Central Districts of Shanghai, China," Sustainability, MDPI, vol. 8(2), pages 1-22, January.
    6. Bin Ye & Jingjing Jiang & Lixin Miao & Peng Yang & Ji Li & Bo Shen, 2015. "Feasibility Study of a Solar-Powered Electric Vehicle Charging Station Model," Energies, MDPI, vol. 8(11), pages 1-19, November.
    7. Sun, Honghang & Zhi, Qiang & Wang, Yibo & Yao, Qiang & Su, Jun, 2014. "China’s solar photovoltaic industry development: The status quo, problems and approaches," Applied Energy, Elsevier, vol. 118(C), pages 221-230.
    8. Seoin Baek & Heetae Kim & Hyun Joon Chang, 2015. "Optimal Hybrid Renewable Power System for an Emerging Island of South Korea: The Case of Yeongjong Island," Sustainability, MDPI, vol. 7(10), pages 1-17, October.
    9. Shen, Bo & Ghatikar, Girish & Lei, Zeng & Li, Jinkai & Wikler, Greg & Martin, Phil, 2014. "The role of regulatory reforms, market changes, and technology development to make demand response a viable resource in meeting energy challenges," Applied Energy, Elsevier, vol. 130(C), pages 814-823.
    10. Lariviere, Isabelle & Lafrance, Gaetan, 1999. "Modelling the electricity consumption of cities: effect of urban density," Energy Economics, Elsevier, vol. 21(1), pages 53-66, February.
    11. Bin Ye & Jingjing Jiang & Lixin Miao & Ji Li & Yang Peng, 2015. "Innovative Carbon Allowance Allocation Policy for the Shenzhen Emission Trading Scheme in China," Sustainability, MDPI, vol. 8(1), pages 1-23, December.
    12. Wang, Peng & Dai, Han-cheng & Ren, Song-yan & Zhao, Dai-qing & Masui, Toshihiko, 2015. "Achieving Copenhagen target through carbon emission trading: Economic impacts assessment in Guangdong Province of China," Energy, Elsevier, vol. 79(C), pages 212-227.
    13. Dalton, G.J. & Lockington, D.A. & Baldock, T.E., 2009. "Feasibility analysis of renewable energy supply options for a grid-connected large hotel," Renewable Energy, Elsevier, vol. 34(4), pages 955-964.
    14. He, Gang & Kammen, Daniel M., 2014. "Where, when and how much wind is available? A provincial-scale wind resource assessment for China," Energy Policy, Elsevier, vol. 74(C), pages 116-122.
    15. Zhao, Zhen-Yu & Chang, Rui-Dong, 2013. "How to implement a wind power project in China?—Management procedure and model study," Renewable Energy, Elsevier, vol. 50(C), pages 950-958.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xu, Xinhai & Xu, Ben & Dong, Jun & Liu, Xiaotong, 2017. "Near-term analysis of a roll-out strategy to introduce fuel cell vehicles and hydrogen stations in Shenzhen China," Applied Energy, Elsevier, vol. 196(C), pages 229-237.
    2. Garfield Wayne Hunter & Gideon Sagoe & Daniele Vettorato & Ding Jiayu, 2019. "Sustainability of Low Carbon City Initiatives in China: A Comprehensive Literature Review," Sustainability, MDPI, vol. 11(16), pages 1-37, August.
    3. Akbar Maleki & Marc A. Rosen & Fathollah Pourfayaz, 2017. "Optimal Operation of a Grid-Connected Hybrid Renewable Energy System for Residential Applications," Sustainability, MDPI, vol. 9(8), pages 1-20, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bin Ye & Jingjing Jiang & Lixin Miao & Peng Yang & Ji Li & Bo Shen, 2015. "Feasibility Study of a Solar-Powered Electric Vehicle Charging Station Model," Energies, MDPI, vol. 8(11), pages 1-19, November.
    2. Ye, Bin & Yang, Peng & Jiang, Jingjing & Miao, Lixin & Shen, Bo & Li, Ji, 2017. "Feasibility and economic analysis of a renewable energy powered special town in China," Resources, Conservation & Recycling, Elsevier, vol. 121(C), pages 40-50.
    3. Zhang, Ning & Hu, Zhaoguang & Shen, Bo & He, Gang & Zheng, Yanan, 2017. "An integrated source-grid-load planning model at the macro level: Case study for China's power sector," Energy, Elsevier, vol. 126(C), pages 231-246.
    4. Demetriou, E. & Hadjistassou, C., 2021. "Can China decarbonize its electricity sector?," Energy Policy, Elsevier, vol. 148(PB).
    5. Liu, Hailiang & Andresen, Gorm Bruun & Greiner, Martin, 2018. "Cost-optimal design of a simplified highly renewable Chinese electricity network," Energy, Elsevier, vol. 147(C), pages 534-546.
    6. Shangfeng Han & Baosheng Zhang & Xiaoyang Sun & Song Han & Mikael Höök, 2017. "China’s Energy Transition in the Power and Transport Sectors from a Substitution Perspective," Energies, MDPI, vol. 10(5), pages 1-25, April.
    7. Tan, Qinliang & Han, Jian & Liu, Yuan, 2023. "Examining the synergistic diffusion process of carbon capture and renewable energy generation technologies under market environment: A multi-agent simulation analysis," Energy, Elsevier, vol. 282(C).
    8. Hongli Liu & Xiaoyu Yan & Jinhua Cheng & Jun Zhang & Yan Bu, 2021. "Driving Factors for the Spatiotemporal Heterogeneity in Technical Efficiency of China’s New Energy Industry," Energies, MDPI, vol. 14(14), pages 1-21, July.
    9. Li, Wei & Jia, Zhijie & Zhang, Hongzhi, 2017. "The impact of electric vehicles and CCS in the context of emission trading scheme in China: A CGE-based analysis," Energy, Elsevier, vol. 119(C), pages 800-816.
    10. Jiang, Jingjing & Xie, Dejun & Ye, Bin & Shen, Bo & Chen, Zhanming, 2016. "Research on China’s cap-and-trade carbon emission trading scheme: Overview and outlook," Applied Energy, Elsevier, vol. 178(C), pages 902-917.
    11. Mengfei Jiang & Xi Liang & David Reiner & Boqiang Lin & Maosheng Duan, 2018. "Stakeholder Views on Interactions between Low-carbon Policies and Carbon Markets in China: Lessons from the Guangdong ETS," Working Papers EPRG 1805, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    12. Jiang, Suqin & Chen, Zun & Shan, Li & Chen, Xinyu & Wang, Haikun, 2017. "Committed CO2 emissions of China's coal-fired power generators from 1993 to 2013," Energy Policy, Elsevier, vol. 104(C), pages 295-302.
    13. Chen, Huadong & Wang, Can & Cai, Wenjia & Wang, Jianhui, 2018. "Simulating the impact of investment preference on low-carbon transition in power sector," Applied Energy, Elsevier, vol. 217(C), pages 440-455.
    14. Gosens, Jorrit, 2017. "Natural resource endowment is not a strong driver of wind or PV development," Renewable Energy, Elsevier, vol. 113(C), pages 1007-1018.
    15. Zou, Hongyang & Du, Huibin & Brown, Marilyn A. & Mao, Guozhu, 2017. "Large-scale PV power generation in China: A grid parity and techno-economic analysis," Energy, Elsevier, vol. 134(C), pages 256-268.
    16. Liu, Xi & Du, Huibin & Brown, Marilyn A. & Zuo, Jian & Zhang, Ning & Rong, Qian & Mao, Guozhu, 2018. "Low-carbon technology diffusion in the decarbonization of the power sector: Policy implications," Energy Policy, Elsevier, vol. 116(C), pages 344-356.
    17. Wang, Ni & Verzijlbergh, Remco A. & Heijnen, Petra W. & Herder, Paulien M., 2020. "A spatially explicit planning approach for power systems with a high share of renewable energy sources," Applied Energy, Elsevier, vol. 260(C).
    18. Baochen Yang & Chuanze Liu & Yunpeng Su & Xin Jing, 2017. "The Allocation of Carbon Intensity Reduction Target by 2020 among Industrial Sectors in China," Sustainability, MDPI, vol. 9(1), pages 1-19, January.
    19. Wang, Shaojian & Fang, Chuanglin & Guan, Xingliang & Pang, Bo & Ma, Haitao, 2014. "Urbanisation, energy consumption, and carbon dioxide emissions in China: A panel data analysis of China’s provinces," Applied Energy, Elsevier, vol. 136(C), pages 738-749.
    20. Jingru Huang & Jie Shen & Lu Miao, 2020. "Carbon Emissions Trading and Sustainable Development in China: Empirical Analysis Based on the Coupling Coordination Degree Model," IJERPH, MDPI, vol. 18(1), pages 1-13, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:8:y:2016:i:5:p:452-:d:69571. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.