IDEAS home Printed from https://ideas.repec.org/a/eee/respol/v46y2017i5p939-955.html
   My bibliography  Save this article

Does environmental regulation indirectly induce upstream innovation? New evidence from India

Author

Listed:
  • Chakraborty, Pavel
  • Chatterjee, Chirantan

Abstract

Exploiting a quasi-natural experiment, which involves the imposition of a ban by Germany in 1994 on an input (‘Azo-dyes’) used by the Indian leather and textile industries, we estimate the indirect impact of the environmental regulation on innovation activities of upstream (dye-producing) firms in India and examine how it varies by different firm characteristics: size and ownership. We find robust evidence of a significant increase (11–61%) in innovation expenditure for the dye-makers in response to the ‘Azo-dyes’ ban. Additionally, we find: (i) increase in technology transfer to the tune of 1.2–2.5 times more than that of internal R&D; (ii) increase in innovation expenditure with firm size; (iii) domestic firms investing more in technology transfer as compared to R&D, whereas foreign firms only undertaking the latter and (iv) decrease in investments towards innovation by downstream firms, thereby pointing towards a possible substitution effect in aggregate innovation by upstream firms. Our results are consistent with a variety of estimation methods and robustness checks.

Suggested Citation

  • Chakraborty, Pavel & Chatterjee, Chirantan, 2017. "Does environmental regulation indirectly induce upstream innovation? New evidence from India," Research Policy, Elsevier, vol. 46(5), pages 939-955.
  • Handle: RePEc:eee:respol:v:46:y:2017:i:5:p:939-955
    DOI: 10.1016/j.respol.2017.03.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0048733317300471
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.respol.2017.03.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Popp David, 2005. "Uncertain R&D and the Porter Hypothesis," The B.E. Journal of Economic Analysis & Policy, De Gruyter, vol. 4(1), pages 1-16, June.
    2. Nesta, Lionel & Vona, Francesco & Nicolli, Francesco, 2014. "Environmental policies, competition and innovation in renewable energy," Journal of Environmental Economics and Management, Elsevier, vol. 67(3), pages 396-411.
    3. Stefan Ambec & Mark A. Cohen & Stewart Elgie & Paul Lanoie, 2013. "The Porter Hypothesis at 20: Can Environmental Regulation Enhance Innovation and Competitiveness?," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 7(1), pages 2-22, January.
    4. Pinelopi K Goldberg & Amit K Khandelwal & Nina Pavcnik & Petia Topalova, 2010. "Multiproduct Firms and Product Turnover in the Developing World: Evidence from India," The Review of Economics and Statistics, MIT Press, vol. 92(4), pages 1042-1049, November.
    5. Nelson, Randy A & Tietenberg, Tom & Donihue, Michael R, 1993. "Differential Environmental Regulation: Effects on Electric Utility Capital Turnover and Emissions," The Review of Economics and Statistics, MIT Press, vol. 75(2), pages 368-373, May.
    6. Eli Berman & Linda T. M. Bui, 2001. "Environmental Regulation And Productivity: Evidence From Oil Refineries," The Review of Economics and Statistics, MIT Press, vol. 83(3), pages 498-510, August.
    7. Dechezlepretre, Antoine & Glachant, Matthieu & Hascic, Ivan & Johnstone, Nick & Meniere, Yann, 2009. "Invention and Transfer of Climate Change Mitigation Technologies on a Global Scale: A Study Drawing on Patent Data," Sustainable Development Papers 54361, Fondazione Eni Enrico Mattei (FEEM).
    8. Antoine Dechezleprêtre & Matthieu Glachant, 2014. "Does Foreign Environmental Policy Influence Domestic Innovation? Evidence from the Wind Industry," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 58(3), pages 391-413, July.
    9. Maria Bas & Antoine Berthou, 2017. "Does Input-Trade Liberalization Affect Firms’ Foreign Technology Choice?," The World Bank Economic Review, World Bank, vol. 31(2), pages 351-384.
    10. Meenu Tewari & Poonam Pillai, 2005. "Global Standards and the Dynamics of Environmental Compliance in India's Leather Industry," Oxford Development Studies, Taylor & Francis Journals, vol. 33(2), pages 245-267.
    11. Borghesi, Simone & Cainelli, Giulio & Mazzanti, Massimiliano, 2015. "Linking emission trading to environmental innovation: Evidence from the Italian manufacturing industry," Research Policy, Elsevier, vol. 44(3), pages 669-683.
    12. Richard Kneller & Edward Manderson, 2010. "Environmental compliance costs and innovation activity in UK manufacturing industries," Discussion Papers 10/08, University of Nottingham, School of Economics.
    13. Wayne B. Gray & Ronald J. Shadbegian, 1998. "Environmental Regulation, Investment Timing, and Technology Choice," Journal of Industrial Economics, Wiley Blackwell, vol. 46(2), pages 235-256, June.
    14. Paul Lanoie & Jérémy Laurent‐Lucchetti & Nick Johnstone & Stefan Ambec, 2011. "Environmental Policy, Innovation and Performance: New Insights on the Porter Hypothesis," Journal of Economics & Management Strategy, Wiley Blackwell, vol. 20(3), pages 803-842, September.
    15. Parameswaran Iyer, 1992. "Indian Textile and Clothing Exports in the Global Context," Foreign Trade Review, , vol. 27(1), pages 51-58, April.
    16. Aghion, Ph. & Dewatripont, M. & Rey, P., 1997. "Corporate governance, competition policy and industrial policy," European Economic Review, Elsevier, vol. 41(3-5), pages 797-805, April.
    17. Hunt Allcott & Allan Collard-Wexler & Stephen D. O'Connell, 2016. "How Do Electricity Shortages Affect Industry? Evidence from India," American Economic Review, American Economic Association, vol. 106(3), pages 587-624, March.
    18. Krugman, Paul, 1979. "A Model of Innovation, Technology Transfer, and the World Distribution of Income," Journal of Political Economy, University of Chicago Press, vol. 87(2), pages 253-266, April.
    19. Adam B. Jaffe & Karen Palmer, 1997. "Environmental Regulation And Innovation: A Panel Data Study," The Review of Economics and Statistics, MIT Press, vol. 79(4), pages 610-619, November.
    20. Popp, David, 2006. "International innovation and diffusion of air pollution control technologies: the effects of NOX and SO2 regulation in the US, Japan, and Germany," Journal of Environmental Economics and Management, Elsevier, vol. 51(1), pages 46-71, January.
    21. Takao Asano & Noriaki Matsushima, 2014. "Environmental regulation and technology transfers," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 47(3), pages 889-904, August.
    22. Paroma Sanyal & Suman Ghosh, 2013. "Product Market Competition and Upstream Innovation: Evidence from the U.S. Electricity Market Deregulation," The Review of Economics and Statistics, MIT Press, vol. 95(1), pages 237-254, March.
    23. Francisco L. Rivera-Batiz & Luis A. Rivera-Batiz, 2018. "Economic Integration and Endogenous Growth," World Scientific Book Chapters, in: Francisco L Rivera-Batiz & Luis A Rivera-Batiz (ed.), International Trade, Capital Flows and Economic Development, chapter 1, pages 3-32, World Scientific Publishing Co. Pte. Ltd..
    24. Cohen, Wesley M & Klepper, Steven, 1996. "Firm Size and the Nature of Innovation within Industries: The Case of Process and Product R&D," The Review of Economics and Statistics, MIT Press, vol. 78(2), pages 232-243, May.
    25. Daron Acemoglu & Philippe Aghion & David Hémous, 2014. "The environment and directed technical change in a North–South model," Oxford Review of Economic Policy, Oxford University Press and Oxford Review of Economic Policy Limited, vol. 30(3), pages 513-530.
    26. Chang-Tai Hsieh & Peter J. Klenow, 2009. "Misallocation and Manufacturing TFP in China and India," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 124(4), pages 1403-1448.
    27. Ram C. Acharya & Wolfgang Keller, 2009. "Technology transfer through imports," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 42(4), pages 1411-1448, November.
    28. Gene M. Grossman & Elhanan Helpman, 1991. "Quality Ladders and Product Cycles," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 106(2), pages 557-586.
    29. Jacques Mairesse & Pierre Mohnen, 2002. "Accounting for Innovation and Measuring Innovativeness: An Illustrative Framework and an Application," American Economic Review, American Economic Association, vol. 92(2), pages 226-230, May.
    30. Karen Palmer & Wallace E. Oates & Paul R. Portney & Karen Palmer & Wallace E. Oates & Paul R. Portney, 2004. "Tightening Environmental Standards: The Benefit-Cost or the No-Cost Paradigm?," Chapters, in: Environmental Policy and Fiscal Federalism, chapter 3, pages 53-66, Edward Elgar Publishing.
    31. Cainelli, Giulio & Mazzanti, Massimiliano, 2013. "Environmental innovations in services: Manufacturing–services integration and policy transmissions," Research Policy, Elsevier, vol. 42(9), pages 1595-1604.
    32. Lanjouw, Jean Olson & Mody, Ashoka, 1996. "Innovation and the international diffusion of environmentally responsive technology," Research Policy, Elsevier, vol. 25(4), pages 549-571, June.
    33. Zvi Griliches, 1998. "Issues in Assessing the Contribution of Research and Development to Productivity Growth," NBER Chapters, in: R&D and Productivity: The Econometric Evidence, pages 17-45, National Bureau of Economic Research, Inc.
    34. Ambec, Stefan & Barla, Philippe, 2002. "A theoretical foundation of the Porter hypothesis," Economics Letters, Elsevier, vol. 75(3), pages 355-360, May.
    35. Mohr, Robert D., 2002. "Technical Change, External Economies, and the Porter Hypothesis," Journal of Environmental Economics and Management, Elsevier, vol. 43(1), pages 158-168, January.
    36. Antoine Dechezleprêtre & Matthieu Glachant & Ivan Haščič & Nick Johnstone & Yann Ménière, 2011. "Invention and Transfer of Climate Change--Mitigation Technologies: A Global Analysis," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 5(1), pages 109-130, Winter.
    37. Petra Moser & Alessandra Voena, 2012. "Compulsory Licensing: Evidence from the Trading with the Enemy Act," American Economic Review, American Economic Association, vol. 102(1), pages 396-427, February.
    38. Philippe Aghion & Nick Bloom & Richard Blundell & Rachel Griffith & Peter Howitt, 2005. "Competition and Innovation: an Inverted-U Relationship," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 120(2), pages 701-728.
    39. Raphael Calel & Antoine Dechezleprêtre, 2016. "Environmental Policy and Directed Technological Change: Evidence from the European Carbon Market," The Review of Economics and Statistics, MIT Press, vol. 98(1), pages 173-191, March.
    40. Greaker, Mads, 2006. "Spillovers in the development of new pollution abatement technology: A new look at the Porter-hypothesis," Journal of Environmental Economics and Management, Elsevier, vol. 52(1), pages 411-420, July.
    41. James Levinsohn & Amil Petrin, 2003. "Estimating Production Functions Using Inputs to Control for Unobservables," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 70(2), pages 317-341.
    42. Perkins, Richard & Neumayer, Eric, 2012. "Does the ‘California effect’ operate across borders? trading- and investing-up in automobile emission standards," LSE Research Online Documents on Economics 42097, London School of Economics and Political Science, LSE Library.
    43. Lee G. Branstetter & Raymond Fisman & C. Fritz Foley, 2006. "Do Stronger Intellectual Property Rights Increase International Technology Transfer? Empirical Evidence from U. S. Firm-Level Panel Data," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 121(1), pages 321-349.
    44. Brunnermeier, Smita B. & Cohen, Mark A., 2003. "Determinants of environmental innovation in US manufacturing industries," Journal of Environmental Economics and Management, Elsevier, vol. 45(2), pages 278-293, March.
    45. Paula Bustos, 2011. "Trade Liberalization, Exports, and Technology Upgrading: Evidence on the Impact of MERCOSUR on Argentinian Firms," American Economic Review, American Economic Association, vol. 101(1), pages 304-340, February.
    46. Joshua S. Gans, 2012. "Innovation and Climate Change Policy," American Economic Journal: Economic Policy, American Economic Association, vol. 4(4), pages 125-145, November.
    47. Nesta, Lionel & Vona, Francesco & Nicolli, Francesco, 2014. "Environmental policies, competition and innovation in renewable energy," Journal of Environmental Economics and Management, Elsevier, vol. 67(3), pages 396-411.
    48. Fisman, Raymond & Khanna, Tarun, 2004. "Facilitating Development: The Role of Business Groups," World Development, Elsevier, vol. 32(4), pages 609-628, April.
    49. Branstetter, Lee G., 2001. "Are knowledge spillovers international or intranational in scope?: Microeconometric evidence from the U.S. and Japan," Journal of International Economics, Elsevier, vol. 53(1), pages 53-79, February.
    50. Audretsch, David B & Feldman, Maryann P, 1996. "R&D Spillovers and the Geography of Innovation and Production," American Economic Review, American Economic Association, vol. 86(3), pages 630-640, June.
    51. Gray, Wayne B & Shadbegian, Ronald J, 1998. "Environmental Regulation, Investment Timing, and Technology Choice," Journal of Industrial Economics, Wiley Blackwell, vol. 46(2), pages 235-256, June.
    52. J. M. C. Santos Silva & Silvana Tenreyro, 2006. "The Log of Gravity," The Review of Economics and Statistics, MIT Press, vol. 88(4), pages 641-658, November.
    53. Cohen, Wesley M., 2010. "Fifty Years of Empirical Studies of Innovative Activity and Performance," Handbook of the Economics of Innovation, in: Bronwyn H. Hall & Nathan Rosenberg (ed.), Handbook of the Economics of Innovation, edition 1, volume 1, chapter 0, pages 129-213, Elsevier.
    54. Petia Topalova & Amit Khandelwal, 2011. "Trade Liberalization and Firm Productivity: The Case of India," The Review of Economics and Statistics, MIT Press, vol. 93(3), pages 995-1009, August.
    55. Arora, Ashish & Fosfuri, Andrea & Gambardella, Alfonso, 2001. "Markets for Technology and Their Implications for Corporate Strategy," Industrial and Corporate Change, Oxford University Press and the Associazione ICC, vol. 10(2), pages 419-451, June.
    56. Simpson, R. David & Bradford, Robert III, 1996. "Taxing Variable Cost: Environmental Regulation as Industrial Policy," Journal of Environmental Economics and Management, Elsevier, vol. 30(3), pages 282-300, May.
    57. Glass, Amy Jocelyn & Saggi, Kamal, 1998. "International technology transfer and the technology gap," Journal of Development Economics, Elsevier, vol. 55(2), pages 369-398, April.
    58. Yann Ménière & Antoine Dechezleprêtre & Matthieu Glachant & Ivan Hascic & N. Johnstone, 2011. "Invention and transfer of climate change mitigation technologies: a study drawing on patent data," Post-Print hal-00869795, HAL.
    59. Ahsan, Reshad N. & Mitra, Devashish, 2014. "Trade liberalization and labor's slice of the pie: Evidence from Indian firms," Journal of Development Economics, Elsevier, vol. 108(C), pages 1-16.
    60. Dechezleprêtre, Antoine & Neumayer, Eric & Perkins, Richard, 2015. "Environmental regulation and the cross-border diffusion of new technology: Evidence from automobile patents," Research Policy, Elsevier, vol. 44(1), pages 244-257.
    61. Michelle Gittelman & Bruce Kogut, 2003. "Does Good Science Lead to Valuable Knowledge? Biotechnology Firms and the Evolutionary Logic of Citation Patterns," Management Science, INFORMS, vol. 49(4), pages 366-382, April.
    62. Michael E. Porter & Claas van der Linde, 1995. "Toward a New Conception of the Environment-Competitiveness Relationship," Journal of Economic Perspectives, American Economic Association, vol. 9(4), pages 97-118, Fall.
    63. Ahsan, Reshad N., 2013. "Input tariffs, speed of contract enforcement, and the productivity of firms in India," Journal of International Economics, Elsevier, vol. 90(1), pages 181-192.
    64. Moulton, Brent R, 1990. "An Illustration of a Pitfall in Estimating the Effects of Aggregate Variables on Micro Unit," The Review of Economics and Statistics, MIT Press, vol. 72(2), pages 334-338, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chakraborty, Pavel & Chakrabarti, Anindya S. & Chatterjee, Chirantan, 2023. "Cross-border environmental regulation and firm labor demand," Journal of Environmental Economics and Management, Elsevier, vol. 117(C).
    2. Stefan Ambec & Mark A. Cohen & Stewart Elgie & Paul Lanoie, 2013. "The Porter Hypothesis at 20: Can Environmental Regulation Enhance Innovation and Competitiveness?," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 7(1), pages 2-22, January.
    3. Herman, Kyle S. & Xiang, Jun, 2019. "Induced innovation in clean energy technologies from foreign environmental policy stringency?," Technological Forecasting and Social Change, Elsevier, vol. 147(C), pages 198-207.
    4. Costantini, Valeria & Crespi, Francesco & Palma, Alessandro, 2017. "Characterizing the policy mix and its impact on eco-innovation: A patent analysis of energy-efficient technologies," Research Policy, Elsevier, vol. 46(4), pages 799-819.
    5. Massimiliano Mazzanti & Giovanni Marin & Susanna Mancinelli & Francesco Nicolli, 2015. "Carbon dioxide reducing environmental innovations, sector upstream/downstream integration and policy: evidence from the EU," Empirica, Springer;Austrian Institute for Economic Research;Austrian Economic Association, vol. 42(4), pages 709-735, November.
    6. Rubashkina, Yana & Galeotti, Marzio & Verdolini, Elena, 2015. "Environmental regulation and competitiveness: Empirical evidence on the Porter Hypothesis from European manufacturing sectors," Energy Policy, Elsevier, vol. 83(C), pages 288-300.
    7. Anabel Zárate-Marco & Jaime Vallés-Giménez, 2015. "Environmental tax and productivity in a decentralized context: new findings on the Porter hypothesis," European Journal of Law and Economics, Springer, vol. 40(2), pages 313-339, October.
    8. Gonseth, Camille & Cadot, Olivier & Mathys, Nicole A. & Thalmann, Philippe, 2015. "Energy-tax changes and competitiveness: The role of adaptive capacity," Energy Economics, Elsevier, vol. 48(C), pages 127-135.
    9. Stefan Ambec & Paul Lanoie, 2007. "When and Why Does It Pay To Be Green?," CIRANO Working Papers 2007s-20, CIRANO.
    10. Francesco Crespi & Claudia Ghisetti & Francesco Quatraro, 2015. "Environmental and innovation policies for the evolution of green technologies: a survey and a test," Eurasian Business Review, Springer;Eurasia Business and Economics Society, vol. 5(2), pages 343-370, December.
    11. Rassier, Dylan G. & Earnhart, Dietrich, 2015. "Effects of environmental regulation on actual and expected profitability," Ecological Economics, Elsevier, vol. 112(C), pages 129-140.
    12. Kneller, Richard & Manderson, Edward, 2012. "Environmental regulations and innovation activity in UK manufacturing industries," Resource and Energy Economics, Elsevier, vol. 34(2), pages 211-235.
    13. Xiang Deng & Li Li, 2020. "Promoting or Inhibiting? The Impact of Environmental Regulation on Corporate Financial Performance—An Empirical Analysis Based on China," IJERPH, MDPI, vol. 17(11), pages 1-17, May.
    14. Sen, Suphi, 2015. "Corporate governance, environmental regulations, and technological change," European Economic Review, Elsevier, vol. 80(C), pages 36-61.
    15. Dechezleprêtre, Antoine & Neumayer, Eric & Perkins, Richard, 2015. "Environmental regulation and the cross-border diffusion of new technology: Evidence from automobile patents," Research Policy, Elsevier, vol. 44(1), pages 244-257.
    16. Rexhäuser, Sascha & Rammer, Christian, 2011. "Unmasking the Porter hypothesis: Environmental innovations and firm-profitability," ZEW Discussion Papers 11-036, ZEW - Leibniz Centre for European Economic Research.
    17. Paul Lanoie & Jérémy Laurent‐Lucchetti & Nick Johnstone & Stefan Ambec, 2011. "Environmental Policy, Innovation and Performance: New Insights on the Porter Hypothesis," Journal of Economics & Management Strategy, Wiley Blackwell, vol. 20(3), pages 803-842, September.
    18. Ambec, Stefan & Barla, Philippe, 2005. "Can Environmental Regulations be Good for Business? an Assessment of the Porter Hypothesis," Cahiers de recherche 0505, Université Laval - Département d'économique.
    19. Li, Kai & Yan, Yaxue & Zhang, Xiaoling, 2021. "Carbon-abatement policies, investment preferences, and directed technological change: Evidence from China," Technological Forecasting and Social Change, Elsevier, vol. 172(C).
    20. Erik Hille & Patrick Möbius, 2019. "Environmental Policy, Innovation, and Productivity Growth: Controlling the Effects of Regulation and Endogeneity," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 73(4), pages 1315-1355, August.

    More about this item

    Keywords

    ‘Azo-dyes’ ban; Innovation; R&D expenditure; Technology transfer; Dye-producing firms; India;
    All these keywords.

    JEL classification:

    • K32 - Law and Economics - - Other Substantive Areas of Law - - - Energy, Environmental, Health, and Safety Law
    • O3 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights
    • L25 - Industrial Organization - - Firm Objectives, Organization, and Behavior - - - Firm Performance

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:respol:v:46:y:2017:i:5:p:939-955. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/respol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.