Advanced Search
MyIDEAS: Login to save this article or follow this journal

A dynamic analysis of moving average rules

Contents:

Author Info

  • Chiarella, Carl
  • He, Xue-Zhong
  • Hommes, Cars

Abstract

The use of various moving average rules remains popular with financial market practitioners. These rules have recently become the focus of a number empirical studies, but there have been very few studies of financial market models where some agents employ technical trading rules also used in practice. In this paper we propose a dynamic financial market model in which demand for traded assets has both a fundamentalist and a chartist component. The chartist demand is governed by the difference between current price and a (long run) moving average. Both types of traders are boundedly rational in the sense that, based on a fitness measure such as realized capital gains, traders switch from a strategy with low fitness to the one with high fitness. We characterize the stability and bifurcation properties of the underlying deterministic model via the reaction coefficient of the fundamentalists, the extrapolation rate of the chartists and the lag lengths used for the moving averages. By increasing the intensity of choice to switching strategies, we then examine various rational routes to randomness for different moving average rules. The price dynamics of the moving average rule is also examined and one of our main findings is that an increase of the window length of the moving average rule can destabilize an otherwise stable system, leading to more complicated, even chaotic behaviour. The analysis of the corresponding stochastic model is able to explain various market price phenomena, including temporary bubbles, sudden market crashes, price resistance and price switching between different levels.

(This abstract was borrowed from another version of this item.)

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://www.sciencedirect.com/science/article/B6V85-4K07FJ5-1/2/85078ada312b573dbba261f9b2178a05
Download Restriction: Full text for ScienceDirect subscribers only

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Bibliographic Info

Article provided by Elsevier in its journal Journal of Economic Dynamics and Control.

Volume (Year): 30 (2006)
Issue (Month): 9-10 ()
Pages: 1729-1753

as in new window
Handle: RePEc:eee:dyncon:v:30:y:2006:i:9-10:p:1729-1753

Contact details of provider:
Web page: http://www.elsevier.com/locate/jedc

Related research

Keywords:

Other versions of this item:

Find related papers by JEL classification:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Carl Chiarella, 1992. "The Dynamics of Speculative Behaviour," Working Paper Series 13, Finance Discipline Group, UTS Business School, University of Technology, Sydney.
  2. Taylor, Mark P. & Allen, Helen, 1992. "The use of technical analysis in the foreign exchange market," Journal of International Money and Finance, Elsevier, vol. 11(3), pages 304-314, June.
  3. LeBaron, Blake, 2006. "Agent-based Computational Finance," Handbook of Computational Economics, in: Leigh Tesfatsion & Kenneth L. Judd (ed.), Handbook of Computational Economics, edition 1, volume 2, chapter 24, pages 1187-1233 Elsevier.
  4. Andrew W. Lo & Harry Mamaysky & Jiang Wang, 2000. "Foundations of Technical Analysis: Computational Algorithms, Statistical Inference, and Empirical Implementation," Journal of Finance, American Finance Association, vol. 55(4), pages 1705-1770, 08.
  5. Boswijk, H.P. & Griffioen, G.A.W. & Hommes, C.H., 2000. "Succes and Failure of Technical Trading Strategies in the Cocoa Futures Markets," CeNDEF Working Papers 00-06, Universiteit van Amsterdam, Center for Nonlinear Dynamics in Economics and Finance.
  6. repec:att:wimass:9621 is not listed on IDEAS
  7. Christopher J. Neely, 1997. "Technical analysis in the foreign exchange market: a layman's guide," Review, Federal Reserve Bank of St. Louis, issue Sep, pages 23-38.
  8. Neely, Christopher & Weller, Paul & Dittmar, Rob, 1997. "Is Technical Analysis in the Foreign Exchange Market Profitable? A Genetic Programming Approach," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 32(04), pages 405-426, December.
  9. Day, Richard H. & Huang, Weihong, 1990. "Bulls, bears and market sheep," Journal of Economic Behavior & Organization, Elsevier, vol. 14(3), pages 299-329, December.
  10. Chiarella, Carl & He, Xue-Zhong, 2002. "Heterogeneous Beliefs, Risk and Learning in a Simple Asset Pricing Model," Computational Economics, Society for Computational Economics, vol. 19(1), pages 95-132, February.
  11. Pesaran, M.H. & Timmermann, A., 1992. "Forecasting Stock Returns," Cambridge Working Papers in Economics 9216, Faculty of Economics, University of Cambridge.
  12. Blume, Lawrence & Easley, David & O'Hara, Maureen, 1994. " Market Statistics and Technical Analysis: The Role of Volume," Journal of Finance, American Finance Association, vol. 49(1), pages 153-81, March.
  13. Brock, W.A. & Hommes, C.H., 1996. "A Rational Route to Randomness," Working papers 9530r, Wisconsin Madison - Social Systems.
  14. Christopher J. Neely & Paul A. Weller, 2011. "Technical analysis in the foreign exchange market," Working Papers 2011-001, Federal Reserve Bank of St. Louis.
  15. Fernandez-Rodriguez, Fernando & Gonzalez-Martel, Christian & Sosvilla-Rivero, Simon, 2000. "On the profitability of technical trading rules based on artificial neural networks:: Evidence from the Madrid stock market," Economics Letters, Elsevier, vol. 69(1), pages 89-94, October.
  16. Carl Chiarella & Xue-Zhong He, 2000. "Heterogeneous Beliefs, Risk and Learning in a Simple Asset Pricing Model with a Market Maker," Research Paper Series 35, Quantitative Finance Research Centre, University of Technology, Sydney.
  17. Carl Chiarella & Xue-Zhong He, 1999. "The Dynamics of the Cobweb when Producers are Risk Averse Learners," Working Paper Series 90, Finance Discipline Group, UTS Business School, University of Technology, Sydney.
  18. Pesaran, M Hashem & Timmermann, Allan, 1995. " Predictability of Stock Returns: Robustness and Economic Significance," Journal of Finance, American Finance Association, vol. 50(4), pages 1201-28, September.
  19. Allen, Helen & Taylor, Mark P, 1990. "Charts, Noise and Fundamentals in the London Foreign Exchange Market," Economic Journal, Royal Economic Society, vol. 100(400), pages 49-59, Supplemen.
  20. William A. Brock & Blake D. LeBaron, 1995. "A Dynamic Structural Model for Stock Return Volatility and Trading Volume," NBER Working Papers 4988, National Bureau of Economic Research, Inc.
  21. Gencay, Ramazan, 1998. "Optimization of technical trading strategies and the profitability in security markets," Economics Letters, Elsevier, vol. 59(2), pages 249-254, May.
  22. Frankel, Jeffrey A & Froot, Kenneth A, 1986. "Understanding the U.S. Dollar in the Eighties: The Expectations of Chartists and Fundamentalists," The Economic Record, The Economic Society of Australia, vol. 0(0), pages 24-38, Supplemen.
  23. Tesfatsion, Leigh & Judd, Kenneth L., 2006. "Handbook of Computational Economics, Vol. 2: Agent-Based Computational Economics," Staff General Research Papers 10368, Iowa State University, Department of Economics.
  24. Hommes, Cars H., 2006. "Heterogeneous Agent Models in Economics and Finance," Handbook of Computational Economics, in: Leigh Tesfatsion & Kenneth L. Judd (ed.), Handbook of Computational Economics, edition 1, volume 2, chapter 23, pages 1109-1186 Elsevier.
  25. David Goldbaum, 2003. "Profitable technical trading rules as a source of price instability," Quantitative Finance, Taylor & Francis Journals, vol. 3(3), pages 220-229.
  26. Beja, Avraham & Goldman, M Barry, 1980. " On the Dynamic Behavior of Prices in Disequilibrium," Journal of Finance, American Finance Association, vol. 35(2), pages 235-48, May.
  27. Brock, William A. & Hommes, Cars H., 1998. "Heterogeneous beliefs and routes to chaos in a simple asset pricing model," Journal of Economic Dynamics and Control, Elsevier, vol. 22(8-9), pages 1235-1274, August.
  28. Chiarella, Carl & He, Xue-Zhong, 2003. "Dynamics of beliefs and learning under aL-processes -- the heterogeneous case," Journal of Economic Dynamics and Control, Elsevier, vol. 27(3), pages 503-531, January.
  29. Fama, Eugene F, 1970. "Efficient Capital Markets: A Review of Theory and Empirical Work," Journal of Finance, American Finance Association, vol. 25(2), pages 383-417, May.
  30. Brock, W. & Lakonishok, J. & Lebaron, B., 1991. "Simple Technical Trading Rules And The Stochastic Properties Of Stock Returns," Working papers 90-22, Wisconsin Madison - Social Systems.
Full references (including those not matched with items on IDEAS)

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
This item has more than 25 citations. To prevent cluttering this page, these citations are listed on a separate page.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:eee:dyncon:v:30:y:2006:i:9-10:p:1729-1753. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.