IDEAS home Printed from https://ideas.repec.org/r/pra/mprapa/5615.html
   My bibliography  Save this item

On the distribution of penalized maximum likelihood estimators: The LASSO, SCAD, and thresholding

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Lu, Xun & Su, Liangjun, 2016. "Shrinkage estimation of dynamic panel data models with interactive fixed effects," Journal of Econometrics, Elsevier, vol. 190(1), pages 148-175.
  2. Giurcanu, Mihai C., 2012. "Bootstrapping in non-regular smooth function models," Journal of Multivariate Analysis, Elsevier, vol. 111(C), pages 78-93.
  3. repec:eee:econom:v:207:y:2018:i:2:p:352-380 is not listed on IDEAS
  4. repec:spr:aistmt:v:71:y:2019:i:5:d:10.1007_s10463-018-0670-0 is not listed on IDEAS
  5. Kascha, Christian & Trenkler, Carsten, 2011. "Bootstrapping the likelihood ratio cointegration test in error correction models with unknown lag order," Computational Statistics & Data Analysis, Elsevier, vol. 55(2), pages 1008-1017, February.
  6. Yoshimasa Uematsu & Takashi Yamagata, 2019. "Estimation of Weak Factor Models," ISER Discussion Paper 1053, Institute of Social and Economic Research, Osaka University.
  7. Anders Bredahl Kock, 2013. "Oracle inequalities for high-dimensional panel data models," CREATES Research Papers 2013-20, Department of Economics and Business Economics, Aarhus University.
  8. David Drukker, 2019. "Inference after lasso model selection," 2019 Stata Conference 3, Stata Users Group.
  9. McCloskey, Adam, 2017. "Bonferroni-based size-correction for nonstandard testing problems," Journal of Econometrics, Elsevier, vol. 200(1), pages 17-35.
  10. Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney K. Newey, 2016. "Double machine learning for treatment and causal parameters," CeMMAP working papers CWP49/16, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
  11. Leeb, Hannes & Pötscher, Benedikt M. & Ewald, Karl, 2014. "On various confidence intervals post-model-selection," MPRA Paper 52858, University Library of Munich, Germany.
  12. repec:gam:jjrfmx:v:12:y:2019:i:3:p:109-:d:243056 is not listed on IDEAS
  13. Marcelo C. Medeiros & Eduardo F. Mendes, 2015. "l1-Regularization of High-Dimensional Time-Series Models with Flexible Innovations," Textos para discussão 636, Department of Economics PUC-Rio (Brazil).
  14. Alexandre Belloni & Victor Chernozhukov & Ying Wei, 2016. "Post-Selection Inference for Generalized Linear Models With Many Controls," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(4), pages 606-619, October.
  15. Farrell, Max H., 2015. "Robust inference on average treatment effects with possibly more covariates than observations," Journal of Econometrics, Elsevier, vol. 189(1), pages 1-23.
  16. Carvalho, Carlos & Masini, Ricardo & Medeiros, Marcelo C., 2018. "ArCo: An artificial counterfactual approach for high-dimensional panel time-series data," Journal of Econometrics, Elsevier, vol. 207(2), pages 352-380.
  17. repec:spr:compst:v:32:y:2017:i:2:d:10.1007_s00180-016-0690-2 is not listed on IDEAS
  18. Laurin Charles & Boomsma Dorret & Lubke Gitta, 2016. "The use of vector bootstrapping to improve variable selection precision in Lasso models," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 15(4), pages 305-320, August.
  19. Kwon, Sunghoon & Lee, Sangin & Kim, Yongdai, 2015. "Moderately clipped LASSO," Computational Statistics & Data Analysis, Elsevier, vol. 92(C), pages 53-67.
  20. Pötscher, Benedikt M., 2007. "Confidence Sets Based on Sparse Estimators Are Necessarily Large," MPRA Paper 5677, University Library of Munich, Germany.
  21. Pötscher, Benedikt M. & Schneider, Ulrike, 2007. "On the distribution of the adaptive LASSO estimator," MPRA Paper 6913, University Library of Munich, Germany.
  22. Pötscher, Benedikt M. & Schneider, Ulrike, 2008. "Confidence sets based on penalized maximum likelihood estimators," MPRA Paper 9062, University Library of Munich, Germany.
  23. Latouche, Pierre & Mattei, Pierre-Alexandre & Bouveyron, Charles & Chiquet, Julien, 2016. "Combining a relaxed EM algorithm with Occam’s razor for Bayesian variable selection in high-dimensional regression," Journal of Multivariate Analysis, Elsevier, vol. 146(C), pages 177-190.
  24. Anders Bredahl Kock, 2012. "On the Oracle Property of the Adaptive Lasso in Stationary and Nonstationary Autoregressions," CREATES Research Papers 2012-05, Department of Economics and Business Economics, Aarhus University.
  25. Andreas Groll & Gerhard Tutz, 2017. "Variable selection in discrete survival models including heterogeneity," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 23(2), pages 305-338, April.
  26. repec:eee:econom:v:207:y:2018:i:1:p:92-113 is not listed on IDEAS
  27. Max H. Farrell, 2013. "Robust Inference on Average Treatment Effects with Possibly More Covariates than Observations," Papers 1309.4686, arXiv.org, revised Feb 2018.
  28. Leeb, Hannes & Pötscher, Benedikt M. & Kivaranovic, Danijel, 2018. "Comment on "Model Confidence Bounds for Variable Selection" by Yang Li, Yuetian Luo, Davide Ferrari, Xiaonan Hu, and Yichen Qin," MPRA Paper 90655, University Library of Munich, Germany.
IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.