IDEAS home Printed from https://ideas.repec.org/a/eee/econom/v249y2025ipbs0304407625000314.html
   My bibliography  Save this article

Bootstrap based asymptotic refinements for high-dimensional nonlinear models

Author

Listed:
  • Horowitz, Joel L.
  • Rafi, Ahnaf

Abstract

We consider penalized extremum estimation of a high-dimensional, possibly nonlinear model that is sparse in the sense that most of its parameters are zero but some are not. We use the SCAD penalty function, which provides model selection consistent and oracle efficient estimates under suitable conditions. However, asymptotic approximations based on the oracle model can be inaccurate with the sample sizes found in many applications. This paper gives conditions under which the bootstrap, based on estimates obtained through SCAD penalization with thresholding, provides asymptotic refinements of size O(n−2) for the error in the rejection (coverage) probability of a symmetric hypothesis test (confidence interval) and O(n−1) for the error in the rejection (coverage) probability of a one-sided or equal tailed test (confidence interval). The results of Monte Carlo experiments show that the bootstrap can provide large reductions in errors in rejection and coverage probabilities. The bootstrap is consistent, though it does not necessarily provide asymptotic refinements, if some parameters are close but not equal to zero. Random-coefficients logit and probit models and nonlinear moment models are examples of models to which the procedure applies.

Suggested Citation

  • Horowitz, Joel L. & Rafi, Ahnaf, 2025. "Bootstrap based asymptotic refinements for high-dimensional nonlinear models," Journal of Econometrics, Elsevier, vol. 249(PB).
  • Handle: RePEc:eee:econom:v:249:y:2025:i:pb:s0304407625000314
    DOI: 10.1016/j.jeconom.2025.105977
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304407625000314
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jeconom.2025.105977?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or

    for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Alexandre Belloni & Victor Chernozhukov & Christian Hansen, 2014. "Inference on Treatment Effects after Selection among High-Dimensional Controlsâ€," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 81(2), pages 608-650.
    2. Pötscher, Benedikt M. & Leeb, Hannes, 2009. "On the distribution of penalized maximum likelihood estimators: The LASSO, SCAD, and thresholding," Journal of Multivariate Analysis, Elsevier, vol. 100(9), pages 2065-2082, October.
    3. Fan J. & Li R., 2001. "Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1348-1360, December.
    4. Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney K. Newey, 2016. "Double machine learning for treatment and causal parameters," CeMMAP working papers CWP49/16, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    5. Guan Yu & Liang Yin & Shu Lu & Yufeng Liu, 2020. "Confidence Intervals for Sparse Penalized Regression With Random Designs," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 115(530), pages 794-809, April.
    6. L. Camponovo, 2015. "On the validity of the pairs bootstrap for lasso estimators," Biometrika, Biometrika Trust, vol. 102(4), pages 981-987.
    7. Chatterjee, A. & Lahiri, S. N., 2011. "Bootstrapping Lasso Estimators," Journal of the American Statistical Association, American Statistical Association, vol. 106(494), pages 608-625.
    8. Xianyang Zhang & Guang Cheng, 2017. "Simultaneous Inference for High-Dimensional Linear Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(518), pages 757-768, April.
    9. Lorenzo Camponovo, 2020. "Bootstrap inference for penalized GMM estimators with oracle properties," Econometric Reviews, Taylor & Francis Journals, vol. 39(4), pages 362-372, April.
    10. Matthew Gentzkow & Jesse M. Shapiro & Matt Taddy, 2019. "Measuring Group Differences in High‐Dimensional Choices: Method and Application to Congressional Speech," Econometrica, Econometric Society, vol. 87(4), pages 1307-1340, July.
    11. Antoniadis A. & Fan J., 2001. "Regularization of Wavelet Approximations," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 939-967, September.
    12. Zou, Hui, 2006. "The Adaptive Lasso and Its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1418-1429, December.
    13. Ruben Dezeure & Peter Bühlmann & Cun-Hui Zhang, 2017. "High-dimensional simultaneous inference with the bootstrap," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 26(4), pages 685-719, December.
    14. Friedman, Jerome H. & Hastie, Trevor & Tibshirani, Rob, 2010. "Regularization Paths for Generalized Linear Models via Coordinate Descent," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 33(i01).
    15. Shu Lu & Yufeng Liu & Liang Yin & Kai Zhang, 2017. "Confidence intervals and regions for the lasso by using stochastic variational inequality techniques in optimization," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(2), pages 589-611, March.
    16. Lan Wang & Ingrid Van Keilegom & Adam Maidman, 2018. "Wild residual bootstrap inference for penalized quantile regression with heteroscedastic errors," Biometrika, Biometrika Trust, vol. 105(4), pages 859-872.
    17. Cun-Hui Zhang & Stephanie S. Zhang, 2014. "Confidence intervals for low dimensional parameters in high dimensional linear models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 76(1), pages 217-242, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. T. Tony Cai & Zijian Guo & Yin Xia, 2023. "Statistical inference and large-scale multiple testing for high-dimensional regression models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 32(4), pages 1135-1171, December.
    2. Xiaorui Zhu & Yichen Qin & Peng Wang, 2025. "Sparsified simultaneous confidence intervals for high-dimensional linear models," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 88(5), pages 709-733, July.
    3. Hansen, Christian & Liao, Yuan, 2019. "The Factor-Lasso And K-Step Bootstrap Approach For Inference In High-Dimensional Economic Applications," Econometric Theory, Cambridge University Press, vol. 35(3), pages 465-509, June.
    4. Tanin Sirimongkolkasem & Reza Drikvandi, 2019. "On Regularisation Methods for Analysis of High Dimensional Data," Annals of Data Science, Springer, vol. 6(4), pages 737-763, December.
    5. Victor Chernozhukov & Wolfgang Härdle & Chen Huang & Weining Wang, 2018. "LASSO-driven inference in time and space," CeMMAP working papers CWP36/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    6. Xiaorui Zhu & Yichen Qin & Peng Wang, 2023. "Sparsified Simultaneous Confidence Intervals for High-Dimensional Linear Models," Papers 2307.07574, arXiv.org, revised Jan 2025.
    7. Qin, Yichen & Wang, Linna & Li, Yang & Li, Rong, 2023. "Visualization and assessment of model selection uncertainty," Computational Statistics & Data Analysis, Elsevier, vol. 178(C).
    8. Jingxuan Luo & Lili Yue & Gaorong Li, 2023. "Overview of High-Dimensional Measurement Error Regression Models," Mathematics, MDPI, vol. 11(14), pages 1-22, July.
    9. Claude Renaux & Laura Buzdugan & Markus Kalisch & Peter Bühlmann, 2020. "Hierarchical inference for genome-wide association studies: a view on methodology with software," Computational Statistics, Springer, vol. 35(1), pages 1-40, March.
    10. Agboola, Oluwagbenga David & Yu, Han, 2023. "Neighborhood-based cross fitting approach to treatment effects with high-dimensional data," Computational Statistics & Data Analysis, Elsevier, vol. 186(C).
    11. Yoshimasa Uematsu & Takashi Yamagata, 2019. "Estimation of Weak Factor Models," ISER Discussion Paper 1053r, Institute of Social and Economic Research, The University of Osaka, revised Mar 2020.
    12. Ertefaie Ashkan & Asgharian Masoud & Stephens David A., 2018. "Variable Selection in Causal Inference using a Simultaneous Penalization Method," Journal of Causal Inference, De Gruyter, vol. 6(1), pages 1-16, March.
    13. Farrell, Max H., 2015. "Robust inference on average treatment effects with possibly more covariates than observations," Journal of Econometrics, Elsevier, vol. 189(1), pages 1-23.
    14. Hui Xiao & Yiguo Sun, 2019. "On Tuning Parameter Selection in Model Selection and Model Averaging: A Monte Carlo Study," JRFM, MDPI, vol. 12(3), pages 1-16, June.
    15. Yoichi Arai & Taisuke Otsu & Myung Hwan Seo, 2021. "Regression Discontinuity Design with Potentially Many Covariates," Papers 2109.08351, arXiv.org, revised Feb 2024.
    16. Kaspar Wuthrich & Ying Zhu, 2019. "Omitted variable bias of Lasso-based inference methods: A finite sample analysis," Papers 1903.08704, arXiv.org, revised Sep 2021.
    17. Christian Hansen & Damian Kozbur & Sanjog Misra, 2016. "Targeted undersmoothing," ECON - Working Papers 282, Department of Economics - University of Zurich, revised Apr 2018.
    18. Caner, Mehmet & Kock, Anders Bredahl, 2018. "Asymptotically honest confidence regions for high dimensional parameters by the desparsified conservative Lasso," Journal of Econometrics, Elsevier, vol. 203(1), pages 143-168.
    19. Tang, Lu & Zhou, Ling & Song, Peter X.-K., 2020. "Distributed simultaneous inference in generalized linear models via confidence distribution," Journal of Multivariate Analysis, Elsevier, vol. 176(C).
    20. Alexandre Belloni & Victor Chernozhukov & Denis Chetverikov & Christian Hansen & Kengo Kato, 2018. "High-Dimensional Econometrics and Regularized GMM," Papers 1806.01888, arXiv.org, revised Jun 2018.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:econom:v:249:y:2025:i:pb:s0304407625000314. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jeconom .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.