IDEAS home Printed from https://ideas.repec.org/a/eee/econom/v249y2025ipbs0304407625000314.html
   My bibliography  Save this article

Bootstrap based asymptotic refinements for high-dimensional nonlinear models

Author

Listed:
  • Horowitz, Joel L.
  • Rafi, Ahnaf

Abstract

We consider penalized extremum estimation of a high-dimensional, possibly nonlinear model that is sparse in the sense that most of its parameters are zero but some are not. We use the SCAD penalty function, which provides model selection consistent and oracle efficient estimates under suitable conditions. However, asymptotic approximations based on the oracle model can be inaccurate with the sample sizes found in many applications. This paper gives conditions under which the bootstrap, based on estimates obtained through SCAD penalization with thresholding, provides asymptotic refinements of size O(n−2) for the error in the rejection (coverage) probability of a symmetric hypothesis test (confidence interval) and O(n−1) for the error in the rejection (coverage) probability of a one-sided or equal tailed test (confidence interval). The results of Monte Carlo experiments show that the bootstrap can provide large reductions in errors in rejection and coverage probabilities. The bootstrap is consistent, though it does not necessarily provide asymptotic refinements, if some parameters are close but not equal to zero. Random-coefficients logit and probit models and nonlinear moment models are examples of models to which the procedure applies.

Suggested Citation

  • Horowitz, Joel L. & Rafi, Ahnaf, 2025. "Bootstrap based asymptotic refinements for high-dimensional nonlinear models," Journal of Econometrics, Elsevier, vol. 249(PB).
  • Handle: RePEc:eee:econom:v:249:y:2025:i:pb:s0304407625000314
    DOI: 10.1016/j.jeconom.2025.105977
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304407625000314
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jeconom.2025.105977?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:econom:v:249:y:2025:i:pb:s0304407625000314. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jeconom .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.