Author
Abstract
Statistical inference of the high-dimensional regression coefficients is challenging because the uncertainty introduced by the model selection procedure is hard to account for. Currently, the inference of the model and the inference of the coefficients are separately sought. A critical question remains unsettled; that is, is it possible to embed the inference of the model into the simultaneous inference of the coefficients? If so, then how to properly design a simultaneous inference tool with desired properties? To this end, we propose a notion of simultaneous confidence intervals called the sparsified simultaneous confidence intervals (SSCI). Our intervals are sparse in the sense that some of the intervals’ upper and lower bounds are shrunken to zero (i.e., [0, 0]), indicating the unimportance of the corresponding covariates. These covariates should be excluded from the final model. The rest of the intervals, either containing zero (e.g., $$[-1,1]$$ [ - 1 , 1 ] or [0, 1]) or not containing zero (e.g., [2, 3]), indicate the plausible and significant covariates, respectively. The SSCI intuitively suggests a lower-bound model with significant covariates only and an upper-bound model with plausible and significant covariates. The proposed method can be coupled with various selection procedures, making it ideal for comparing their uncertainty. For the proposed method, we establish desirable asymptotic properties, develop intuitive graphical tools for visualization, and justify its superior performance through simulation and real data analysis.
Suggested Citation
Xiaorui Zhu & Yichen Qin & Peng Wang, 2025.
"Sparsified simultaneous confidence intervals for high-dimensional linear models,"
Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 88(5), pages 709-733, July.
Handle:
RePEc:spr:metrik:v:88:y:2025:i:5:d:10.1007_s00184-024-00975-z
DOI: 10.1007/s00184-024-00975-z
Download full text from publisher
As the access to this document is restricted, you may want to
for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metrik:v:88:y:2025:i:5:d:10.1007_s00184-024-00975-z. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.