IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this paper

Oracle inequalities for high-dimensional panel data models

Listed author(s):
  • Anders Bredahl Kock


    (Aarhus University and CREATES)

This paper is concerned with high-dimensional panel data models where the number of regressors can be much larger than the sample size. Under the assumption that the true parameter vector is sparse we establish finite sample upper bounds on the estimation error of the Lasso under two different sets of conditions on the covariates as well as the error terms. Upper bounds on the estimation error of the unobserved heterogeneity are also provided under the assumption of sparsity. Next, we show that our upper bounds are essentially optimal in the sense that they can only be improved by multiplicative constants. These results are then used to show that the Lasso can be consistent in even very large models where the number of regressors increases at an exponential rate in the sample size. Conditions under which the Lasso does not discard any relevant variables asymptotically are also provided. In the second part of the paper we give lower bounds on the probability with which the adaptive Lasso selects the correct sparsity pattern in finite samples. These results are then used to give conditions under which the adaptive Lasso can detect the correct sparsity pattern asymptotically. We illustrate our finite sample results by simulations and apply the methods to search for covariates explaining growth in the G8 countries.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
Download Restriction: no

Paper provided by Department of Economics and Business Economics, Aarhus University in its series CREATES Research Papers with number 2013-20.

in new window

Length: 37
Date of creation: 06 Dec 2013
Handle: RePEc:aah:create:2013-20
Contact details of provider: Web page:

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

in new window

  1. Zou, Hui, 2006. "The Adaptive Lasso and Its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1418-1429, December.
  2. A. Belloni & V. Chernozhukov & L. Wang, 2011. "Square-root lasso: pivotal recovery of sparse signals via conic programming," Biometrika, Biometrika Trust, vol. 98(4), pages 791-806.
  3. Robert J. Barro, 1991. "Economic Growth in a Cross Section of Countries," The Quarterly Journal of Economics, Oxford University Press, vol. 106(2), pages 407-443.
  4. Pötscher, Benedikt M. & Leeb, Hannes, 2009. "On the distribution of penalized maximum likelihood estimators: The LASSO, SCAD, and thresholding," Journal of Multivariate Analysis, Elsevier, vol. 100(9), pages 2065-2082, October.
  5. Jianqing Fan & Jinchi Lv, 2008. "Sure independence screening for ultrahigh dimensional feature space," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(5), pages 849-911.
  6. Fan J. & Li R., 2001. "Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1348-1360, December.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:aah:create:2013-20. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ()

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.