IDEAS home Printed from https://ideas.repec.org/r/nat/natene/v2y2017i9d10.1038_nenergy.2017.124.html
   My bibliography  Save this item

Efficient and equitable spatial allocation of renewable power plants at the country scale

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Göke, Leonard & Kendziorski, Mario & Kemfert, Claudia & Hirschhausen, Christian von, 2022. "Accounting for spatiality of renewables and storage in transmission planning," Energy Economics, Elsevier, vol. 113(C).
  2. Wang, Ni & Verzijlbergh, Remco A. & Heijnen, Petra W. & Herder, Paulien M., 2023. "Incorporating indirect costs into energy system optimization models: Application to the Dutch national program Regional Energy Strategies," Energy, Elsevier, vol. 276(C).
  3. McKenna, Russell & Weinand, Jann Michael & Mulalic, Ismir & Petrovic, Stefan & Mainzer, Kai & Preis, Tobias & Moat, Helen Susannah, 2020. "Improving renewable energy resource assessments by quantifying landscape beauty," Working Paper Series in Production and Energy 43, Karlsruhe Institute of Technology (KIT), Institute for Industrial Production (IIP).
  4. Salomon, Hannes & Drechsler, Martin & Reutter, Felix, 2020. "Minimum distances for wind turbines: A robustness analysis of policies for a sustainable wind power deployment," Energy Policy, Elsevier, vol. 140(C).
  5. Lehmann, Paul & Reutter, Felix & Tafarte, Philip, 2023. "Optimal siting of onshore wind turbines: Local disamenities matter," Resource and Energy Economics, Elsevier, vol. 74(C).
  6. Tafarte, Philip & Lehmann, Paul, 2023. "Quantifying trade-offs for the spatial allocation of onshore wind generation capacity – A case study for Germany," Ecological Economics, Elsevier, vol. 209(C).
  7. Elkadeem, Mohamed R. & Younes, Ali & Mazzeo, Domenico & Jurasz, Jakub & Elia Campana, Pietro & Sharshir, Swellam W. & Alaam, Mohamed A., 2022. "Geospatial-assisted multi-criterion analysis of solar and wind power geographical-technical-economic potential assessment," Applied Energy, Elsevier, vol. 322(C).
  8. Kendziorski, Mario & Göke, Leonard & von Hirschhausen, Christian & Kemfert, Claudia & Zozmann, Elmar, 2022. "Centralized and decentral approaches to succeed the 100% energiewende in Germany in the European context – A model-based analysis of generation, network, and storage investments," Energy Policy, Elsevier, vol. 167(C).
  9. Russell McKenna & Stefan Pfenninger & Heidi Heinrichs & Johannes Schmidt & Iain Staffell & Katharina Gruber & Andrea N. Hahmann & Malte Jansen & Michael Klingler & Natascha Landwehr & Xiaoli Guo Lars', 2021. "Reviewing methods and assumptions for high-resolution large-scale onshore wind energy potential assessments," Papers 2103.09781, arXiv.org.
  10. Bistline, John & Santen, Nidhi & Young, David, 2019. "The economic geography of variable renewable energy and impacts of trade formulations for renewable mandates," Renewable and Sustainable Energy Reviews, Elsevier, vol. 106(C), pages 79-96.
  11. Kristine Grimsrud & Cathrine Hagem & Arne Lind & Henrik Lindhjem, 2020. "Efficient spatial allocation of wind power plants given environmental externalities due to turbines and grids," Discussion Papers 938, Statistics Norway, Research Department.
  12. Guillot, Victor & Siggini, Gildas & Assoumou, Edi, 2023. "Interactions between land and grid development in the transition to a decarbonized European power system," Energy Policy, Elsevier, vol. 175(C).
  13. Franziska Steinberger & Tobias Minder & Evelina Trutnevyte, 2020. "Efficiency versus Equity in Spatial Siting of Electricity Generation: Citizen Preferences in a Serious Board Game in Switzerland," Energies, MDPI, vol. 13(18), pages 1-17, September.
  14. Hooshmand Zaferani, Sadeq & Ghomashchi, Reza & Vashaee, Daryoosh, 2019. "Strategies for engineering phonon transport in Heusler thermoelectric compounds," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 158-169.
  15. Tafarte, Philip & Lehmann, Paul, 2021. "Quantifying trade-offs for the spatial allocation of onshore wind generation capacity: A case study for Germany," UFZ Discussion Papers 2/2021, Helmholtz Centre for Environmental Research (UFZ), Division of Social Sciences (ÖKUS).
  16. Kristine Grimsrud & Cathrine Hagem & Kristina Haaskjold & Henrik Lindhjem & Megan Nowell, 2024. "Spatial Trade-Offs in National Land-Based Wind Power Production in Times of Biodiversity and Climate Crises," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 87(2), pages 401-436, February.
  17. Ulf Liebe & Geesche M. Dobers, 2020. "Measurement of Fairness Perceptions in Energy Transition Research: A Factorial Survey Approach," Sustainability, MDPI, vol. 12(19), pages 1-14, September.
  18. McKenna, Russell & Pfenninger, Stefan & Heinrichs, Heidi & Schmidt, Johannes & Staffell, Iain & Bauer, Christian & Gruber, Katharina & Hahmann, Andrea N. & Jansen, Malte & Klingler, Michael & Landwehr, 2022. "High-resolution large-scale onshore wind energy assessments: A review of potential definitions, methodologies and future research needs," Renewable Energy, Elsevier, vol. 182(C), pages 659-684.
  19. Dan Tong & David J. Farnham & Lei Duan & Qiang Zhang & Nathan S. Lewis & Ken Caldeira & Steven J. Davis, 2021. "Geophysical constraints on the reliability of solar and wind power worldwide," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
  20. Bucksteeg, Michael, 2019. "Modelling the impact of geographical diversification of wind turbines on the required firm capacity in Germany," Applied Energy, Elsevier, vol. 235(C), pages 1476-1491.
  21. Bo Wang & Limao Wang & Shuai Zhong & Ning Xiang & Qiushi Qu, 2022. "Low-Carbon Transformation of Electric System against Power Shortage in China: Policy Optimization," Energies, MDPI, vol. 15(4), pages 1-18, February.
  22. Engelhorn, Thorsten & Müsgens, Felix, 2021. "Why is Germany’s energy transition so expensive? Quantifying the costs of wind-energy decentralisation," Resource and Energy Economics, Elsevier, vol. 65(C).
  23. Lonergan, Katherine Emma & Suter, Nicolas & Sansavini, Giovanni, 2023. "Energy systems modelling for just transitions," Energy Policy, Elsevier, vol. 183(C).
  24. Gemma Delafield & Greg S. Smith & Brett Day & Robert Holland & Andrew Lovett, 2024. "The Financial and Environmental Consequences of Renewable Energy Exclusion Zones," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 87(2), pages 369-398, February.
  25. Cuenca, Juan J. & Daly, Hannah E. & Hayes, Barry P., 2023. "Sharing the grid: The key to equitable access for small-scale energy generation," Applied Energy, Elsevier, vol. 349(C).
  26. Jan Stede & Nils May, 2020. "Way Off: The Effect of Minimum Distance Regulation on the Deployment of Wind Power," Discussion Papers of DIW Berlin 1867, DIW Berlin, German Institute for Economic Research.
  27. Grimsrud, Kristine & Hagem, Cathrine & Lind, Arne & Lindhjem, Henrik, 2021. "Efficient spatial distribution of wind power plants given environmental externalities due to turbines and grids," Energy Economics, Elsevier, vol. 102(C).
  28. Peter Lopion & Peter Markewitz & Detlef Stolten & Martin Robinius, 2019. "Cost Uncertainties in Energy System Optimization Models: A Quadratic Programming Approach for Avoiding Penny Switching Effects," Energies, MDPI, vol. 12(20), pages 1-12, October.
  29. Mai, Trieu & Bistline, John & Sun, Yinong & Cole, Wesley & Marcy, Cara & Namovicz, Chris & Young, David, 2018. "The role of input assumptions and model structures in projections of variable renewable energy: A multi-model perspective of the U.S. electricity system," Energy Economics, Elsevier, vol. 76(C), pages 313-324.
  30. Walch, Alina & Rüdisüli, Martin, 2023. "Strategic PV expansion and its impact on regional electricity self-sufficiency: Case study of Switzerland," Applied Energy, Elsevier, vol. 346(C).
  31. Oehlmann, Malte & Glenk, Klaus & Lloyd-Smith, Patrick & Meyerhoff, Jürgen, 2021. "Quantifying landscape externalities of renewable energy development: Implications of attribute cut-offs in choice experiments," Resource and Energy Economics, Elsevier, vol. 65(C).
  32. David Franzmann & Heidi Heinrichs & Felix Lippkau & Thushara Addanki & Christoph Winkler & Patrick Buchenberg & Thomas Hamacher & Markus Blesl & Jochen Lin{ss}en & Detlef Stolten, 2023. "Green Hydrogen Cost-Potentials for Global Trade," Papers 2303.00314, arXiv.org, revised May 2023.
  33. Felix Reutter & Martin Drechsler & Erik Gawel & Paul Lehmann, 2024. "Social Costs of Setback Distances for Onshore Wind Turbines: A Model Analysis Applied to the German State of Saxony," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 87(2), pages 437-463, February.
  34. Wang, Fengjuan & Xie, Yachen & Xu, Jiuping, 2019. "Reliable-economical equilibrium based short-term scheduling towards hybrid hydro-photovoltaic generation systems: Case study from China," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
  35. Zhang, Hongyan & Gao, Shuaizhi & Zhou, Peng, 2023. "Role of digitalization in energy storage technological innovation: Evidence from China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 171(C).
  36. Karbassi, Veis & Trotter, Philipp A. & Walther, Grit, 2023. "Diversifying the African energy system: Economic versus equitable allocation of renewable electricity and e-fuel production," Applied Energy, Elsevier, vol. 350(C).
  37. Jan Stede & Marc Blauert & Nils May, 2021. "Way Off: The Effect of Minimum Distance Regulation on the Deployment and Cost of Wind Power," Discussion Papers of DIW Berlin 1989, DIW Berlin, German Institute for Economic Research.
  38. Eichhorn, Marcus & Masurowski, Frank & Becker, Raik & Thrän, Daniela, 2019. "Wind energy expansion scenarios – A spatial sustainability assessment," Energy, Elsevier, vol. 180(C), pages 367-375.
  39. Lohr, C. & Schlemminger, M. & Peterssen, F. & Bensmann, A. & Niepelt, R. & Brendel, R. & Hanke-Rauschenbach, R., 2022. "Spatial concentration of renewables in energy system optimization models," Renewable Energy, Elsevier, vol. 198(C), pages 144-154.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.