IDEAS home Printed from https://ideas.repec.org/r/ier/iecrev/v18y1977i3p755-70.html
   My bibliography  Save this item

Inter-fuel Substitution Possibilities: A Translog Application to Intercountry Data

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Patrik Söderholm, 2000. "Environmental Regulations and Interfuel Substitution in the Power Sector: A Generalized Leontief Model," Energy & Environment, , vol. 11(1), pages 1-23, January.
  2. Manish Gupta & Ramprasad Sengupta, 2013. "Energy Savings Potential and Policy for Energy Conservation in Selected Indian Manufacturing Industries," Review of Market Integration, India Development Foundation, vol. 5(3), pages 363-388, December.
  3. Liu, Kui & Bai, Hongkun & Yin, Shuo & Lin, Boqiang, 2018. "Factor substitution and decomposition of carbon intensity in China's heavy industry," Energy, Elsevier, vol. 145(C), pages 582-591.
  4. Matisoff, Daniel C. & Noonan, Douglas S. & Cui, Jinshu, 2014. "Electric utilities, fuel use, and responsiveness to fuel prices," Energy Economics, Elsevier, vol. 46(C), pages 445-452.
  5. Miljkovic, Dragan & Dalbec, Nathan & Zhang, Lei, 2016. "Estimating dynamics of US demand for major fossil fuels," Energy Economics, Elsevier, vol. 55(C), pages 284-291.
  6. Floros, Nikolaos & Vlachou, Andriana, 2005. "Energy demand and energy-related CO2 emissions in Greek manufacturing: Assessing the impact of a carbon tax," Energy Economics, Elsevier, vol. 27(3), pages 387-413, May.
  7. Zhang, Yi & Ji, Qiang & Fan, Ying, 2018. "The price and income elasticity of China's natural gas demand: A multi-sectoral perspective," Energy Policy, Elsevier, vol. 113(C), pages 332-341.
  8. Bacon, Robert, 1992. "Measuring the possibilities of interfuel substitution," Policy Research Working Paper Series 1031, The World Bank.
  9. Jevgenijs Steinbuks, 2012. "Interfuel Substitution and Energy Use in the U.K. Manufacturing Sector," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1).
  10. Papageorgiou, Chris & Saam, Marianne & Schulte, Patrick, 2013. "Elasticity of substitution between clean and dirty energy inputs: A macroeconomic perspective," ZEW Discussion Papers 13-087, ZEW - Leibniz Centre for European Economic Research.
  11. Bousquet, Alain & Ladoux, Norbert, 2006. "Flexible versus designated technologies and interfuel substitution," Energy Economics, Elsevier, vol. 28(4), pages 426-443, July.
  12. Soderholm, Patrik, 2001. "Fossil fuel flexibility in west European power generation and the impact of system load factors," Energy Economics, Elsevier, vol. 23(1), pages 77-97, January.
  13. Jones, Clifton T., 2014. "The role of biomass in US industrial interfuel substitution," Energy Policy, Elsevier, vol. 69(C), pages 122-126.
  14. Chambers, Robert G., 1994. "Aggregate Homothetic Separability," Working Papers 197804, University of Maryland, Department of Agricultural and Resource Economics.
  15. Anna Creti & Bertrand Villeneuve, 2003. "Politique énergétique : aspects stratégiques de la question des approvisionnements," Economie & Prévision, La Documentation Française, vol. 158(2), pages 73-88.
  16. Lundmark, Robert & Söderholm, Patrik & Lundmark, Robert, 2003. "Structural changes in Swedish wastepaper demand: a variable cost function approach," Journal of Forest Economics, Elsevier, vol. 9(1), pages 41-63.
  17. Harrison Fell & Daniel T. Kaffine, 2014. "A one-two punch: Joint effects of natural gas abundance and renewables on coal-fired power plants," Working Papers 2014-10, Colorado School of Mines, Division of Economics and Business.
  18. Pettersson, Fredrik & Söderholm, Patrik & Lundmark, Robert, 2012. "Fuel switching and climate and energy policies in the European power generation sector: A generalized Leontief model," Energy Economics, Elsevier, vol. 34(4), pages 1064-1073.
  19. Bjorner, Thomas Bue & Togeby, Mikael & Jensen, Henrik Holm, 2001. "Industrial companies' demand for electricity: evidence from a micropanel," Energy Economics, Elsevier, vol. 23(5), pages 595-617, September.
  20. Magnus, J.R. & Woodland, A.D., 1990. "Separability and aggregation," Other publications TiSEM 7f5133e0-9f4a-46ae-b8c2-4, Tilburg University, School of Economics and Management.
  21. Gao, Jing & Nelson, Robert & Zhang, Lei, 2013. "Substitution in the electric power industry: An interregional comparison in the eastern US," Energy Economics, Elsevier, vol. 40(C), pages 316-325.
  22. repec:dau:papers:123456789/5373 is not listed on IDEAS
  23. Ahmed, Ather Maqsood & Kemal, M. Ali, 2001. "Energy demand in Pakistan and the possibility of inter fuel substitution," MPRA Paper 50257, University Library of Munich, Germany, revised Mar 2001.
  24. Andersen, Trude Berg & Nilsen, Odd Bjarte & Tveteras, Ragnar, 2011. "How is demand for natural gas determined across European industrial sectors?," Energy Policy, Elsevier, vol. 39(9), pages 5499-5508, September.
  25. Tauchmann, H., 2006. "Firing the furnace? An econometric analysis of utilities' fuel choice," Energy Policy, Elsevier, vol. 34(18), pages 3898-3909, December.
  26. Berglund, Christer & Soderholm, Patrik, 2003. "Complementing Empirical Evidence on Global Recycling and Trade of Waste Paper," World Development, Elsevier, vol. 31(4), pages 743-754, April.
  27. Shaik, Saleem & Yeboah, Osei-Agyeman, 2018. "Does climate influence energy demand? A regional analysis," Applied Energy, Elsevier, vol. 212(C), pages 691-703.
  28. Óscar Afonso & Liliana Fonseca & Manuela Magalhães & Paulo B. Vasconcelos, 2021. "Directed technical change and environmental quality," Portuguese Economic Journal, Springer;Instituto Superior de Economia e Gestao, vol. 20(1), pages 71-97, January.
  29. Jorge Blazquez & Jose Maria Martin-Moreno & Rafaela Perez & Jesus Ruiz, 2017. "Fossil Fuel Price Shocks and CO2 Emissions: The Case of Spain," The Energy Journal, International Association for Energy Economics, vol. 0(Number 6).
  30. Lafrancois, Becky A., 2012. "A lot left over: Reducing CO2 emissions in the United States’ electric power sector through the use of natural gas," Energy Policy, Elsevier, vol. 50(C), pages 428-435.
  31. Dong Hee Suh & Charles B. Moss, 2017. "Dynamic adjustment of ethanol demand to crude oil prices: implications for mandated ethanol usage," Empirical Economics, Springer, vol. 52(4), pages 1587-1607, June.
  32. Mansikkasalo, Anna & Lundmark, Robert & Söderholm, Patrik, 2014. "Market behavior and policy in the recycled paper industry: A critical survey of price elasticity research," Forest Policy and Economics, Elsevier, vol. 38(C), pages 17-29.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.