IDEAS home Printed from https://ideas.repec.org/r/eee/transb/v23y1989i1p1-17.html
   My bibliography  Save this item

A stochastic process approach to the analysis of temporal dynamics in transportation networks

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Hazelton, Martin L., 2000. "Estimation of origin-destination matrices from link flows on uncongested networks," Transportation Research Part B: Methodological, Elsevier, vol. 34(7), pages 549-566, September.
  2. Xiaomei Zhao & Chunhua Wan & Jun Bi, 2019. "Day-to-Day Assignment Models and Traffic Dynamics Under Information Provision," Networks and Spatial Economics, Springer, vol. 19(2), pages 473-502, June.
  3. Wei, Chong & Asakura, Yasuo & Iryo, Takamasa, 2014. "Formulating the within-day dynamic stochastic traffic assignment problem from a Bayesian perspective," Transportation Research Part B: Methodological, Elsevier, vol. 59(C), pages 45-57.
  4. Zhu, Zheng & Mardan, Atabak & Zhu, Shanjiang & Yang, Hai, 2021. "Capturing the interaction between travel time reliability and route choice behavior based on the generalized Bayesian traffic model," Transportation Research Part B: Methodological, Elsevier, vol. 143(C), pages 48-64.
  5. Lo, H. P. & Zhang, N. & Lam, W. H. K., 1999. "Decomposition algorithm for statistical estimation of OD matrix with random link choice proportions from traffic counts," Transportation Research Part B: Methodological, Elsevier, vol. 33(5), pages 369-385, June.
  6. Hazelton, Martin L., 2002. "Day-to-day variation in Markovian traffic assignment models," Transportation Research Part B: Methodological, Elsevier, vol. 36(7), pages 637-648, August.
  7. Agostino Nuzzolo & Francesco Russo & Umberto Crisalli, 2001. "A Doubly Dynamic Schedule-based Assignment Model for Transit Networks," Transportation Science, INFORMS, vol. 35(3), pages 268-285, August.
  8. Hazelton, Martin L., 1998. "Some Remarks on Stochastic User Equilibrium," Transportation Research Part B: Methodological, Elsevier, vol. 32(2), pages 101-108, February.
  9. Xu, Xiangdong & Qu, Kai & Chen, Anthony & Yang, Chao, 2021. "A new day-to-day dynamic network vulnerability analysis approach with Weibit-based route adjustment process," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 153(C).
  10. Padma Seetharaman, 2017. "Modelling risk aversion using a disaggregate stochastic process model in congested transit networks," Public Transport, Springer, vol. 9(3), pages 549-569, October.
  11. Liu, Ronghui & Smith, Mike, 2015. "Route choice and traffic signal control: A study of the stability and instability of a new dynamical model of route choice and traffic signal control," Transportation Research Part B: Methodological, Elsevier, vol. 77(C), pages 123-145.
  12. Smith, M.J. & Liu, R. & Mounce, R., 2015. "Traffic control and route choice: Capacity maximisation and stability," Transportation Research Part B: Methodological, Elsevier, vol. 81(P3), pages 863-885.
  13. Alessandro Innocenti & Patrizia Lattarulo & Maria Grazia Pazienza, 2009. "Heuristics and Biases in Travel Mode Choice," Labsi Experimental Economics Laboratory University of Siena 027, University of Siena.
  14. Satsukawa, Koki & Wada, Kentaro & Iryo, Takamasa, 2020. "Reprint of “Stochastic stability of dynamic user equilibrium in unidirectional networks: Weakly acyclic game approach”," Transportation Research Part B: Methodological, Elsevier, vol. 132(C), pages 117-135.
  15. Navid Khademi & Mojtaba Rajabi & Afshin S. Mohaymany & Mahdi Samadzad, 2016. "Day-to-day travel time perception modeling using an adaptive-network-based fuzzy inference system (ANFIS)," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 5(1), pages 25-52, March.
  16. Watling, David, 1996. "Asymmetric problems and stochastic process models of traffic assignment," Transportation Research Part B: Methodological, Elsevier, vol. 30(5), pages 339-357, October.
  17. Uchida, Kenetsu, 2014. "Estimating the value of travel time and of travel time reliability in road networks," Transportation Research Part B: Methodological, Elsevier, vol. 66(C), pages 129-147.
  18. Danczyk, Adam & Di, Xuan & Liu, Henry X. & Levinson, David M., 2017. "Unexpected versus expected network disruption: Effects on travel behavior," Transport Policy, Elsevier, vol. 57(C), pages 68-78.
  19. Di, Xuan & Liu, Henry X., 2016. "Boundedly rational route choice behavior: A review of models and methodologies," Transportation Research Part B: Methodological, Elsevier, vol. 85(C), pages 142-179.
  20. Dong-Fan Xie & Xiao-Mei Zhao, 2020. "Traffic Dynamics and Mode Choice’s Delay Effect Under Traffic Restriction in Two-Mode Networks," Networks and Spatial Economics, Springer, vol. 20(3), pages 873-913, September.
  21. Flötteröd, Gunnar, 2017. "A search acceleration method for optimization problems with transport simulation constraints," Transportation Research Part B: Methodological, Elsevier, vol. 98(C), pages 239-260.
  22. Kumar, Amit & Peeta, Srinivas, 2015. "A day-to-day dynamical model for the evolution of path flows under disequilibrium of traffic networks with fixed demand," Transportation Research Part B: Methodological, Elsevier, vol. 80(C), pages 235-256.
  23. He, Xiaozheng & Guo, Xiaolei & Liu, Henry X., 2010. "A link-based day-to-day traffic assignment model," Transportation Research Part B: Methodological, Elsevier, vol. 44(4), pages 597-608, May.
  24. Meneguzzer, Claudio, 2022. "Day-to-day dynamics in a simple traffic network with mixed direct and contrarian route choice behaviors," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 603(C).
  25. Liu, Ronghui & Van Vliet, Dirck & Watling, David, 2006. "Microsimulation models incorporating both demand and supply dynamics," Transportation Research Part A: Policy and Practice, Elsevier, vol. 40(2), pages 125-150, February.
  26. Parry, Katharina & Hazelton, Martin L., 2013. "Bayesian inference for day-to-day dynamic traffic models," Transportation Research Part B: Methodological, Elsevier, vol. 50(C), pages 104-115.
  27. G. E. Cantarella & D. P. Watling, 2016. "Modelling road traffic assignment as a day-to-day dynamic, deterministic process: a unified approach to discrete- and continuous-time models," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 5(1), pages 69-98, March.
  28. David Watling & Giulio Cantarella, 2015. "Model Representation & Decision-Making in an Ever-Changing World: The Role of Stochastic Process Models of Transportation Systems," Networks and Spatial Economics, Springer, vol. 15(3), pages 843-882, September.
  29. Canca, David & Zarzo, Alejandro & Algaba, Encarnación & Barrena, Eva, 2013. "Macroscopic attraction-based simulation of pedestrian mobility: A dynamic individual route-choice approach," European Journal of Operational Research, Elsevier, vol. 231(2), pages 428-442.
  30. Jiayang Li & Zhaoran Wang & Yu Marco Nie, 2023. "Wardrop Equilibrium Can Be Boundedly Rational: A New Behavioral Theory of Route Choice," Papers 2304.02500, arXiv.org, revised Feb 2024.
  31. Bie, Jing & Lo, Hong K., 2010. "Stability and attraction domains of traffic equilibria in a day-to-day dynamical system formulation," Transportation Research Part B: Methodological, Elsevier, vol. 44(1), pages 90-107, January.
  32. Paolo Delle Site, 2017. "On the Equivalence Between SUE and Fixed-Point States of Day-to-Day Assignment Processes with Serially-Correlated Route Choice," Networks and Spatial Economics, Springer, vol. 17(3), pages 935-962, September.
  33. Huijun Sun & Si Zhang & Linghui Han & Xiaomei Zhao & Lu Lou, 2020. "Day-to-Day Evolution Model Based on Dynamic Reference Point with Heterogeneous Travelers," Networks and Spatial Economics, Springer, vol. 20(4), pages 935-961, December.
  34. Watling, David P. & Hazelton, Martin L., 2018. "Asymptotic approximations of transient behaviour for day-to-day traffic models," Transportation Research Part B: Methodological, Elsevier, vol. 118(C), pages 90-105.
  35. Ye, Hongbo & Yang, Hai, 2013. "Continuous price and flow dynamics of tradable mobility credits," Transportation Research Part B: Methodological, Elsevier, vol. 57(C), pages 436-450.
  36. Lo, H. & Hickman, M. & Walstad, M., 1996. "An Evaluation Taxonomy For Congestion Pricing," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt80g5s1km, Institute of Transportation Studies, UC Berkeley.
  37. Hazelton, Martin L., 2022. "The emergence of stochastic user equilibria in day-to-day traffic models," Transportation Research Part B: Methodological, Elsevier, vol. 158(C), pages 102-112.
  38. David Watling, 2002. "A Second Order Stochastic Network Equilibrium Model, I: Theoretical Foundation," Transportation Science, INFORMS, vol. 36(2), pages 149-166, May.
  39. Gunnar Flötteröd & Michel Bierlaire & Kai Nagel, 2011. "Bayesian Demand Calibration for Dynamic Traffic Simulations," Transportation Science, INFORMS, vol. 45(4), pages 541-561, November.
  40. Iryo, Takamasa, 2016. "Day-to-day dynamical model incorporating an explicit description of individuals’ information collection behaviour," Transportation Research Part B: Methodological, Elsevier, vol. 92(PA), pages 88-103.
  41. Katharina Parry & David P. Watling & Martin L. Hazelton, 2016. "A new class of doubly stochastic day-to-day dynamic traffic assignment models," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 5(1), pages 5-23, March.
  42. Cominetti, Roberto & Melo, Emerson & Sorin, Sylvain, 2010. "A payoff-based learning procedure and its application to traffic games," Games and Economic Behavior, Elsevier, vol. 70(1), pages 71-83, September.
  43. Guo, Xiaolei & Liu, Henry X., 2011. "Bounded rationality and irreversible network change," Transportation Research Part B: Methodological, Elsevier, vol. 45(10), pages 1606-1618.
  44. Ye, Hongbo & Xiao, Feng & Yang, Hai, 2021. "Day-to-day dynamics with advanced traveler information," Transportation Research Part B: Methodological, Elsevier, vol. 144(C), pages 23-44.
  45. Hazelton, Martin L. & Parry, Katharina, 2016. "Statistical methods for comparison of day-to-day traffic models," Transportation Research Part B: Methodological, Elsevier, vol. 92(PA), pages 22-34.
  46. Satsukawa, Koki & Wada, Kentaro & Iryo, Takamasa, 2019. "Stochastic stability of dynamic user equilibrium in unidirectional networks: Weakly acyclic game approach," Transportation Research Part B: Methodological, Elsevier, vol. 125(C), pages 229-247.
  47. Wei, Fangfang & Jia, Ning & Ma, Shoufeng, 2016. "Day-to-day traffic dynamics considering social interaction: From individual route choice behavior to a network flow model," Transportation Research Part B: Methodological, Elsevier, vol. 94(C), pages 335-354.
  48. Watling, David, 1998. "Perturbation stability of the asymmetric stochastic equilibrium assignment model," Transportation Research Part B: Methodological, Elsevier, vol. 32(3), pages 155-171, April.
  49. Xuan Di & Henry X. Liu & Shanjiang Zhu & David M. Levinson, 2017. "Indifference bands for boundedly rational route switching," Transportation, Springer, vol. 44(5), pages 1169-1194, September.
  50. Wang, Jian & He, Xiaozheng & Peeta, Srinivas, 2016. "Sensitivity analysis based approximation models for day-to-day link flow evolution process," Transportation Research Part B: Methodological, Elsevier, vol. 92(PA), pages 35-53.
  51. Rambha, Tarun & Boyles, Stephen D., 2016. "Dynamic pricing in discrete time stochastic day-to-day route choice models," Transportation Research Part B: Methodological, Elsevier, vol. 92(PA), pages 104-118.
  52. Martin L. Hazelton & David P. Watling, 2004. "Computation of Equilibrium Distributions of Markov Traffic-Assignment Models," Transportation Science, INFORMS, vol. 38(3), pages 331-342, August.
  53. Watling, David, 1999. "Stability of the stochastic equilibrium assignment problem: a dynamical systems approach," Transportation Research Part B: Methodological, Elsevier, vol. 33(4), pages 281-312, May.
  54. David Watling, 2002. "A Second Order Stochastic Network Equilibrium Model, II: Solution Method and Numerical Experiments," Transportation Science, INFORMS, vol. 36(2), pages 167-183, May.
  55. Xie, Chi & Liu, Zugang, 2014. "On the stochastic network equilibrium with heterogeneous choice inertia," Transportation Research Part B: Methodological, Elsevier, vol. 66(C), pages 90-109.
  56. Xiao, Yu & Lo, Hong K., 2016. "Day-to-day departure time modeling under social network influence," Transportation Research Part B: Methodological, Elsevier, vol. 92(PA), pages 54-72.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.