IDEAS home Printed from https://ideas.repec.org/a/inm/ortrsc/v35y2001i3p268-285.html
   My bibliography  Save this article

A Doubly Dynamic Schedule-based Assignment Model for Transit Networks

Author

Listed:
  • Agostino Nuzzolo

    (Department of Civil Engineering, “Tor Vergata” University of Rome, Via di Tor Vergata, 110, 00133 Rome, Italy)

  • Francesco Russo

    (Department of Computer Science, Mathematics, Electronics and Transportation, Faculty of Engineering, “Mediterranea” University of Reggio Calabria, Feo di Vito, 89100 Reggio Calabria, Italy)

  • Umberto Crisalli

    (Department of Civil Engineering, “Tor Vergata” University of Rome, Via di Tor Vergata, 110, 00133 Rome, Italy)

Abstract

In order to improve the performances of transit modeling and in particular to assess the effects of the introduction of ITS technologies, which imply substantial changes in user behavior, in the last 10 years transit path choice and assignment models that use a schedule-based approach, instead of the traditional frequency-based one, have been developed. This paper presents a schedule-based path choice model for high-frequency transit networks, which allows us to consider the evolution in time of transit services, both within-day and day-to-day, as well as the day-to-day learning process of attributes by which users choose. On the basis of this path choice model a dynamic process assignment model, both within-day and day-to-day (from which the term “doubly dynamic” derives), was developed and tested on a realistically sized network to verify its applicability for operations planning.

Suggested Citation

  • Agostino Nuzzolo & Francesco Russo & Umberto Crisalli, 2001. "A Doubly Dynamic Schedule-based Assignment Model for Transit Networks," Transportation Science, INFORMS, vol. 35(3), pages 268-285, August.
  • Handle: RePEc:inm:ortrsc:v:35:y:2001:i:3:p:268-285
    DOI: 10.1287/trsc.35.3.268.10149
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/trsc.35.3.268.10149
    Download Restriction: no

    File URL: https://libkey.io/10.1287/trsc.35.3.268.10149?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Cascetta, Ennio, 1989. "A stochastic process approach to the analysis of temporal dynamics in transportation networks," Transportation Research Part B: Methodological, Elsevier, vol. 23(1), pages 1-17, February.
    2. Nguyen, S. & Pallottino, S., 1988. "Equilibrium traffic assignment for large scale transit networks," European Journal of Operational Research, Elsevier, vol. 37(2), pages 176-186, November.
    3. Nuzzolo, Agostino & Crisalli, Umberto & Gangemi, Francesca, 2000. "A behavioural choice model for the evaluation of railway supply and pricing policies," Transportation Research Part A: Policy and Practice, Elsevier, vol. 34(5), pages 395-404, June.
    4. Joaquín de Cea & Enrique Fernández, 1993. "Transit Assignment for Congested Public Transport Systems: An Equilibrium Model," Transportation Science, INFORMS, vol. 27(2), pages 133-147, May.
    5. Spiess, Heinz & Florian, Michael, 1989. "Optimal strategies: A new assignment model for transit networks," Transportation Research Part B: Methodological, Elsevier, vol. 23(2), pages 83-102, April.
    6. G. E. Cantarella & E. Cascetta, 1995. "Dynamic Processes and Equilibrium in Transportation Networks: Towards a Unifying Theory," Transportation Science, INFORMS, vol. 29(4), pages 305-329, November.
    7. Moshe Ben-Akiva & Andre de Palma & Pavlos Kanaroglou, 1986. "Dynamic Model of Peak Period Traffic Congestion with Elastic Arrival Rates," Transportation Science, INFORMS, vol. 20(3), pages 164-181, August.
    8. Mahmassani, Hani S. & Chang, Gang-Len, 1986. "Experiments with departure time choice dynamics of urban commuters," Transportation Research Part B: Methodological, Elsevier, vol. 20(4), pages 297-320, August.
    9. Jia Hao Wu & Michael Florian & Patrice Marcotte, 1994. "Transit Equilibrium Assignment: A Model and Solution Algorithms," Transportation Science, INFORMS, vol. 28(3), pages 193-203, August.
    10. Ben-Akiva, Moshe & Cyna, Michèle & de Palma, André, 1984. "Dynamic model of peak period congestion," Transportation Research Part B: Methodological, Elsevier, vol. 18(4-5), pages 339-355.
    11. Wong, S. C. & Tong, C. O., 1998. "Estimation of time-dependent origin-destination matrices for transit networks," Transportation Research Part B: Methodological, Elsevier, vol. 32(1), pages 35-48, January.
    12. Claude Chriqui & Pierre Robillard, 1975. "Common Bus Lines," Transportation Science, INFORMS, vol. 9(2), pages 115-121, May.
    13. Lam, W. H. K. & Gao, Z. Y. & Chan, K. S. & Yang, H., 1999. "A stochastic user equilibrium assignment model for congested transit networks," Transportation Research Part B: Methodological, Elsevier, vol. 33(5), pages 351-368, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiang, Y. & Szeto, W.Y., 2016. "Reliability-based stochastic transit assignment: Formulations and capacity paradox," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 181-206.
    2. Padma Seetharaman, 2017. "Modelling risk aversion using a disaggregate stochastic process model in congested transit networks," Public Transport, Springer, vol. 9(3), pages 549-569, October.
    3. Ren, Hualing & Song, Yingjie & Long, Jiancheng & Si, Bingfeng, 2021. "A new transit assignment model based on line and node strategies," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 121-142.
    4. Diana P. Moreno-Palacio & Carlos A. Gonzalez-Calderon & John Jairo Posada-Henao & Hector Lopez-Ospina & Jhan Kevin Gil-Marin, 2022. "Entropy-Based Transit Tour Synthesis Using Fuzzy Logic," Sustainability, MDPI, vol. 14(21), pages 1-25, November.
    5. Du, Muqing & Chen, Anthony, 2022. "Sensitivity analysis for transit equilibrium assignment and applications to uncertainty analysis," Transportation Research Part B: Methodological, Elsevier, vol. 157(C), pages 175-202.
    6. Xu, Zhandong & Xie, Jun & Liu, Xiaobo & Nie, Yu (Marco), 2020. "Hyperpath-based algorithms for the transit equilibrium assignment problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 143(C).
    7. Wu, Di & Yin, Yafeng & Lawphongpanich, Siriphong, 2011. "Pareto-improving congestion pricing on multimodal transportation networks," European Journal of Operational Research, Elsevier, vol. 210(3), pages 660-669, May.
    8. Kenetsu Uchida & Agachai Sumalee & David Watling & Richard Connors, 2007. "A Study on Network Design Problems for Multi-modal Networks by Probit-based Stochastic User Equilibrium," Networks and Spatial Economics, Springer, vol. 7(3), pages 213-240, September.
    9. Cortés, Cristián E. & Jara-Moroni, Pedro & Moreno, Eduardo & Pineda, Cristobal, 2013. "Stochastic transit equilibrium," Transportation Research Part B: Methodological, Elsevier, vol. 51(C), pages 29-44.
    10. Roberto Cominetti & José Correa, 2001. "Common-Lines and Passenger Assignment in Congested Transit Networks," Transportation Science, INFORMS, vol. 35(3), pages 250-267, August.
    11. Tian, Qingyun & Wang, David Z.W. & Lin, Yun Hui, 2021. "Service operation design in a transit network with congested common lines," Transportation Research Part B: Methodological, Elsevier, vol. 144(C), pages 81-102.
    12. Nielsen, Otto Anker, 2000. "A stochastic transit assignment model considering differences in passengers utility functions," Transportation Research Part B: Methodological, Elsevier, vol. 34(5), pages 377-402, June.
    13. Cepeda, M. & Cominetti, R. & Florian, M., 2006. "A frequency-based assignment model for congested transit networks with strict capacity constraints: characterization and computation of equilibria," Transportation Research Part B: Methodological, Elsevier, vol. 40(6), pages 437-459, July.
    14. Tarun Rambha & Stephen D. Boyles & S. Travis Waller, 2016. "Adaptive Transit Routing in Stochastic Time-Dependent Networks," Transportation Science, INFORMS, vol. 50(3), pages 1043-1059, August.
    15. Lo, Hong K. & Yip, C. W. & Wan, K. H., 2003. "Modeling transfer and non-linear fare structure in multi-modal network," Transportation Research Part B: Methodological, Elsevier, vol. 37(2), pages 149-170, February.
    16. Sun, S. & Szeto, W.Y., 2018. "Logit-based transit assignment: Approach-based formulation and paradox revisit," Transportation Research Part B: Methodological, Elsevier, vol. 112(C), pages 191-215.
    17. Khani, Alireza, 2019. "An online shortest path algorithm for reliable routing in schedule-based transit networks considering transfer failure probability," Transportation Research Part B: Methodological, Elsevier, vol. 126(C), pages 549-564.
    18. Li, Guoyuan & Chen, Anthony, 2023. "Strategy-based transit stochastic user equilibrium model with capacity and number-of-transfers constraints," European Journal of Operational Research, Elsevier, vol. 305(1), pages 164-183.
    19. Chen, Kang & Yang, Zhongzhen & Notteboom, Theo, 2014. "The design of coastal shipping services subject to carbon emission reduction targets and state subsidy levels," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 61(C), pages 192-211.
    20. Li, Qianfei & (Will) Chen, Peng & (Marco) Nie, Yu, 2015. "Finding optimal hyperpaths in large transit networks with realistic headway distributions," European Journal of Operational Research, Elsevier, vol. 240(1), pages 98-108.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ortrsc:v:35:y:2001:i:3:p:268-285. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.