IDEAS home Printed from https://ideas.repec.org/r/eee/tefoso/v80y2013i7p1317-1330.html
   My bibliography  Save this item

Historical evidence for energy efficiency rebound in 30 US sectors and a toolkit for rebound analysts

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Galvin, Ray & Dütschke, Elisabeth & Weiß, Julika, 2021. "A conceptual framework for understanding rebound effects with renewable electricity: A new challenge for decarbonizing the electricity sector," Renewable Energy, Elsevier, vol. 176(C), pages 423-432.
  2. Bruns, Stephan B. & Moneta, Alessio & Stern, David I., 2021. "Estimating the economy-wide rebound effect using empirically identified structural vector autoregressions," Energy Economics, Elsevier, vol. 97(C).
  3. Cordroch, Luisa & Hilpert, Simon & Wiese, Frauke, 2022. "Why renewables and energy efficiency are not enough - the relevance of sufficiency in the heating sector for limiting global warming to 1.5 °C," Technological Forecasting and Social Change, Elsevier, vol. 175(C).
  4. Lin, Boqiang & Li, Jianglong, 2014. "The rebound effect for heavy industry: Empirical evidence from China," Energy Policy, Elsevier, vol. 74(C), pages 589-599.
  5. Amjadi, Golnaz & Lundgren, Tommy & Persson, Lars, 2018. "The Rebound Effect in Swedish Heavy Industry," Energy Economics, Elsevier, vol. 71(C), pages 140-148.
  6. Sorrell, Steve, 2015. "Reducing energy demand: A review of issues, challenges and approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 74-82.
  7. Zheming Yan & Lan Yi & Kerui Du & Zhiming Yang, 2017. "Impacts of Low-Carbon Innovation and Its Heterogeneous Components on CO 2 Emissions," Sustainability, MDPI, vol. 9(4), pages 1-14, April.
  8. Santos, João & Domingos, Tiago & Sousa, Tânia & St. Aubyn, Miguel, 2018. "Useful Exergy Is Key in Obtaining Plausible Aggregate Production Functions and Recognizing the Role of Energy in Economic Growth: Portugal 1960–2009," Ecological Economics, Elsevier, vol. 148(C), pages 103-120.
  9. Chen, Jiandong & Gao, Ming & Shahbaz, Muhammad & Cheng, Shulei & Song, Malin, 2021. "An improved decomposition approach toward energy rebound effects in China: Review since 1992," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
  10. Sandu, Suwin & Yang, Muyi & Phoumin, Han & Aghdam, Reza Fathollahzadeh & Shi, Xunpeng, 2021. "Assessment of accessible, clean and efficient energy systems: A statistical analysis of composite energy performance indices," Applied Energy, Elsevier, vol. 304(C).
  11. Zhou, Meifang & Liu, Yu & Feng, Shenghao & Liu, Yang & Lu, Yingying, 2018. "Decomposition of rebound effect: An energy-specific, general equilibrium analysis in the context of China," Applied Energy, Elsevier, vol. 221(C), pages 280-298.
  12. Adha, Rishan & Hong, Cheng-Yih & Firmansyah, M. & Paranata, Ade, 2021. "Rebound effect with energy efficiency determinants: a two-stage analysis of residential electricity consumption in Indonesia," MPRA Paper 110444, University Library of Munich, Germany.
  13. Galvin, Ray, 2017. "How does speed affect the rebound effect in car travel? Conceptual issues explored in case study of 900 Formula 1 Grand Prix speed trials," Energy, Elsevier, vol. 128(C), pages 28-38.
  14. Giovanni Marin & Alessandro Palma, 2015. "Technology invention and diffusion in residential energy consumption. A stochastic frontier approach," SEEDS Working Papers 1415, SEEDS, Sustainability Environmental Economics and Dynamics Studies, revised Sep 2015.
  15. Chen, Chien-fei & Xu, Xiaojing & Adua, Lazarus & Briggs, Morgan & Nelson, Hannah, 2022. "Exploring the factors that influence energy use intensity across low-, middle-, and high-income households in the United States," Energy Policy, Elsevier, vol. 168(C).
  16. Aramendia, Emmanuel & Heun, Matthew K. & Brockway, Paul E. & Taylor, Peter G., 2022. "Developing a Multi-Regional Physical Supply Use Table framework to improve the accuracy and reliability of energy analysis," Applied Energy, Elsevier, vol. 310(C).
  17. Berner, Anne & Lange, Steffen & Silbersdorff, Alexander, 2022. "Firm-level energy rebound effects and relative efficiency in the German manufacturing sector," Energy Economics, Elsevier, vol. 109(C).
  18. Madurai Elavarasan, Rajvikram & Nadarajah, Mithulananthan & Pugazhendhi, Rishi & Sinha, Avik & Gangatharan, Sivasankar & Chiaramonti, David & Abou Houran, Mohamad, 2023. "The untold subtlety of energy consumption and its influence on policy drive towards Sustainable Development Goal 7," Applied Energy, Elsevier, vol. 334(C).
  19. Fernando Martins & Pedro Moura & Aníbal T. de Almeida, 2022. "The Role of Electrification in the Decarbonization of the Energy Sector in Portugal," Energies, MDPI, vol. 15(5), pages 1-35, February.
  20. Marco Amendola & Francesco Lamperti & Andrea Roventini & Alessandro Sapio, 2023. "Energy efficiency policies in an agent-based macroeconomic model," LEM Papers Series 2023/20, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
  21. Abudureheman, Maliyamu & Jiang, Qingzhe & Dong, Xiucheng & Dong, Cong, 2022. "Spatial effects of dynamic comprehensive energy efficiency on CO2 reduction in China," Energy Policy, Elsevier, vol. 166(C).
  22. David Font Vivanco & Serenella Sala & Will McDowall, 2018. "Roadmap to Rebound: How to Address Rebound Effects from Resource Efficiency Policy," Sustainability, MDPI, vol. 10(6), pages 1-17, June.
  23. Valeria Costantini & Francesco Crespi & Elena Paglialunga, 2019. "Capital–energy substitutability in manufacturing sectors: methodological and policy implications," Eurasian Business Review, Springer;Eurasia Business and Economics Society, vol. 9(2), pages 157-182, June.
  24. Rocha, Felipe Freitas da & Almeida, Edmar Luiz Fagundes de, 2021. "A general equilibrium model of macroeconomic rebound effect: A broader view," Energy Economics, Elsevier, vol. 98(C).
  25. Saunders, Harry D., 2014. "Toward a neoclassical theory of sustainable consumption: Eight golden age propositions," Ecological Economics, Elsevier, vol. 105(C), pages 220-232.
  26. Li, Ding & Gao, Ming & Hou, Wenxuan & Song, Malin & Chen, Jiandong, 2020. "A modified and improved method to measure economy-wide carbon rebound effects based on the PDA-MMI approach," Energy Policy, Elsevier, vol. 147(C).
  27. Figus, Gioele & McGregor, Peter G. & Swales, J. Kim & Turner, Karen, 2020. "Do sticky energy prices impact the time paths of rebound effects associated with energy efficiency actions?," Energy Economics, Elsevier, vol. 86(C).
  28. Steve Sorrell, 2014. "Energy Substitution, Technical Change and Rebound Effects," Energies, MDPI, vol. 7(5), pages 1-24, April.
  29. Morakinyo O. Adetutu, Anthony J. Glass, and Thomas G. Weyman-Jones, 2016. "Economy-wide Estimates of Rebound Effects: Evidence from Panel Data," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3).
  30. Yan, Zheming & Ouyang, Xiaoling & Du, Kerui, 2019. "Economy-wide estimates of energy rebound effect: Evidence from China's provinces," Energy Economics, Elsevier, vol. 83(C), pages 389-401.
  31. Chen, Zhe & Song, Pei & Wang, Baolu, 2021. "Carbon emissions trading scheme, energy efficiency and rebound effect – Evidence from China's provincial data," Energy Policy, Elsevier, vol. 157(C).
  32. Paul E. Brockway & Harry Saunders & Matthew K. Heun & Timothy J. Foxon & Julia K. Steinberger & John R. Barrett & Steve Sorrell, 2017. "Energy Rebound as a Potential Threat to a Low-Carbon Future: Findings from a New Exergy-Based National-Level Rebound Approach," Energies, MDPI, vol. 10(1), pages 1-24, January.
  33. Galvin, Ray & Sunikka-Blank, Minna, 2016. "Quantification of (p)rebound effects in retrofit policies – Why does it matter?," Energy, Elsevier, vol. 95(C), pages 415-424.
  34. Saunders, Harry D. & Roy, Joyashree & Azevedo, Inês M.L. & Chakravarty, Debalina & Dasgupta, Shyamasree & De La Rue Du Can, Stephane & Druckman, Angela & Fouquet, Roger & Grubb, Michael & Lin, Boqiang, 2021. "Energy efficiency: what has research delivered in the last 40 years?," LSE Research Online Documents on Economics 114344, London School of Economics and Political Science, LSE Library.
  35. Yang, Lisha & Li, Zhi, 2017. "Technology advance and the carbon dioxide emission in China – Empirical research based on the rebound effect," Energy Policy, Elsevier, vol. 101(C), pages 150-161.
  36. Galvin, Ray, 2015. "The rebound effect, gender and social justice: A case study in Germany," Energy Policy, Elsevier, vol. 86(C), pages 759-769.
  37. Sonnberger, Marco & Gross, Matthias, 2018. "Rebound Effects in Practice: An Invitation to Consider Rebound From a Practice Theory Perspective," Ecological Economics, Elsevier, vol. 154(C), pages 14-21.
  38. Jiandong Chen & Ming Gao & Ke Ma & Malin Song, 2020. "Different effects of technological progress on China's carbon emissions based on sustainable development," Business Strategy and the Environment, Wiley Blackwell, vol. 29(2), pages 481-492, February.
  39. Orea, Luis & Llorca, Manuel & Filippini, Massimo, 2015. "A new approach to measuring the rebound effect associated to energy efficiency improvements: An application to the US residential energy demand," Energy Economics, Elsevier, vol. 49(C), pages 599-609.
  40. Kenneth Gillingham & David Rapson & Gernot Wagner, 2016. "The Rebound Effect and Energy Efficiency Policy," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 10(1), pages 68-88.
  41. Wei, Taoyuan & Liu, Yang, 2019. "Estimation of resource-specific technological change," Technological Forecasting and Social Change, Elsevier, vol. 138(C), pages 29-33.
  42. Li, Jianglong & Liu, Hongxun & Du, Kerui, 2019. "Does market-oriented reform increase energy rebound effect? Evidence from China's regional development," China Economic Review, Elsevier, vol. 56(C), pages 1-1.
  43. Oleg Badunenko & Subal C. Kumbhakar, 2020. "Energy Intensity and Long- and Short-Term Efficiency in US Manufacturing Industry," Energies, MDPI, vol. 13(15), pages 1-21, August.
  44. Brockway, Paul E. & Sorrell, Steve & Semieniuk, Gregor & Heun, Matthew Kuperus & Court, Victor, 2021. "Energy efficiency and economy-wide rebound effects: A review of the evidence and its implications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
  45. Matthew E. Oliver & Juan Moreno-Cruz & Ross C. Beppler, 2019. "Microeconomics of the rebound effect for residential solar photovoltaic systems," CESifo Working Paper Series 7635, CESifo.
  46. Yu, Xuewei & Moreno-Cruz, Juan & Crittenden, John C., 2015. "Regional energy rebound effect: The impact of economy-wide and sector level energy efficiency improvement in Georgia, USA," Energy Policy, Elsevier, vol. 87(C), pages 250-259.
  47. Liu, Hongxun & Du, Kerui & Li, Jianglong, 2019. "An improved approach to estimate direct rebound effect by incorporating energy efficiency: A revisit of China's industrial energy demand," Energy Economics, Elsevier, vol. 80(C), pages 720-730.
  48. Colmenares, Gloria & Löschel, Andreas & Madlener, Reinhard, 2019. "The rebound effect and its representation in energy and climate models," CAWM Discussion Papers 106, University of Münster, Münster Center for Economic Policy (MEP).
  49. Stern, David I., 2020. "How large is the economy-wide rebound effect?," Energy Policy, Elsevier, vol. 147(C).
  50. Wu, Kuei-Yen & Wu, Jung-Hua & Huang, Yun-Hsun & Fu, Szu-Chi & Chen, Chia-Yon, 2016. "Estimating direct and indirect rebound effects by supply-driven input-output model: A case study of Taiwan's industry," Energy, Elsevier, vol. 115(P1), pages 904-913.
  51. Lin, Boqiang & Zhu, Runqing, 2022. "How does market-oriented reform influence the rebound effect of China’s mining industry?," Economic Analysis and Policy, Elsevier, vol. 74(C), pages 34-44.
  52. Merter AKINCI, Haktan SEVİNÇ, Ömer YILMAZ, 2018. "Jevons Paradoksu: Enerji Etkinliği ve Rebound Etkisi Üzerine Ekonometrik Bir Analiz," Fiscaoeconomia, Tubitak Ulakbim JournalPark (Dergipark), issue 1.
  53. Yang, Lisha & Li, Jianglong, 2017. "Rebound effect in China: Evidence from the power generation sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 53-62.
  54. Yuan, Zhen & Xu, Jie & Li, Bing & Yao, Tingting, 2022. "Limits of technological progress in controlling energy consumption: Evidence from the energy rebound effects across China's industrial sector," Energy, Elsevier, vol. 245(C).
  55. Li, Ke & Jiang, Zhujun, 2016. "The impacts of removing energy subsidies on economy-wide rebound effects in China: An input-output analysis," Energy Policy, Elsevier, vol. 98(C), pages 62-72.
  56. Adetutu, Morakinyo O., 2014. "Energy efficiency and capital-energy substitutability: Evidence from four OPEC countries," Applied Energy, Elsevier, vol. 119(C), pages 363-370.
  57. Khoshkalam Khosroshahi, Musa & Sayadi, Mohammad, 2020. "Tracking the sources of rebound effect resulting from the efficiency improvement in petrol, diesel, natural gas and electricity consumption; A CGE analysis for Iran," Energy, Elsevier, vol. 197(C).
  58. Li, Ke & Lin, Boqiang, 2018. "How to promote energy efficiency through technological progress in China?," Energy, Elsevier, vol. 143(C), pages 812-821.
  59. Toroghi, Shahaboddin H. & Oliver, Matthew E., 2019. "Framework for estimation of the direct rebound effect for residential photovoltaic systems," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
  60. Galvin, Ray, 2016. "Rebound effects from speed and acceleration in electric and internal combustion engine cars: An empirical and conceptual investigation," Applied Energy, Elsevier, vol. 172(C), pages 207-216.
  61. Blackburn, Christopher J. & Moreno-Cruz, Juan, 2021. "Energy efficiency in general equilibrium with input–output linkages," Journal of Environmental Economics and Management, Elsevier, vol. 110(C).
  62. Park, Somin & Shim, Jisoo & Song, Doosam, 2021. "Issues in calculation of balance-point temperatures for heating degree-days for the development of building-energy policy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
  63. Cullenward, Danny & Koomey, Jonathan G., 2016. "A critique of Saunders' ‘historical evidence for energy efficiency rebound in 30 us sectors’," Technological Forecasting and Social Change, Elsevier, vol. 103(C), pages 203-213.
  64. Dahlqvist, Anna & Lundgren, Tommy & Marklund, Per-Olov, 2017. "Assessing the Rebound Effect in Energy Intensive Industries: A Factor Demand Model Approach with Asymmetric Price Response," Working Papers 150, National Institute of Economic Research.
  65. Li, Ke & Lin, Boqiang, 2015. "Heterogeneity in rebound effects: Estimated results and impact of China’s fossil-fuel subsidies," Applied Energy, Elsevier, vol. 149(C), pages 148-160.
  66. Galvin, Ray, 2015. "The ICT/electronics question: Structural change and the rebound effect," Ecological Economics, Elsevier, vol. 120(C), pages 23-31.
  67. David I. Stern, 2017. "How accurate are energy intensity projections?," Climatic Change, Springer, vol. 143(3), pages 537-545, August.
  68. Paul E. Brockway & Matthew K. Heun & João Santos & John R. Barrett, 2017. "Energy-Extended CES Aggregate Production: Current Aspects of Their Specification and Econometric Estimation," Energies, MDPI, vol. 10(2), pages 1-23, February.
  69. Ai, Hongshan & Wu, Xiaofei & Li, Ke, 2020. "Differentiated effects of diversified technological sources on China's electricity consumption: Evidence from the perspective of rebound effect," Energy Policy, Elsevier, vol. 137(C).
  70. Rishan Adha & Cheng-Yih Hong, 2021. "How Large the Direct Rebound Effect for Residential Electricity Consumption When the Artificial Neural Network Takes on the Role? A Taiwan Case Study of Household Electricity Consumption," International Journal of Energy Economics and Policy, Econjournals, vol. 11(3), pages 354-364.
  71. Lin, Boqiang & Zhao, Hongli, 2016. "Technological progress and energy rebound effect in China׳s textile industry: Evidence and policy implications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 173-181.
  72. Wang, Jiayu & Yu, Shuao & Liu, Tiansen, 2021. "A theoretical analysis of the direct rebound effect caused by energy efficiency improvement of private consumers," Economic Analysis and Policy, Elsevier, vol. 69(C), pages 171-181.
  73. Sun, Chuanwang & Chen, Zhilong & Guo, Zhiru & Wu, Huixin, 2022. "Energy rebound effect of various industries in China: Based on hybrid energy input-output model," Energy, Elsevier, vol. 261(PB).
  74. Svetlana Revinova & Konstantin Gomonov, 2023. "A Comparative Analysis of Government Policies to Promote Energy Efficiency in the US, China, and India," International Journal of Energy Economics and Policy, Econjournals, vol. 13(1), pages 291-306, January.
  75. Hu, Changshuai & Du, Dan & Huang, Junbing, 2023. "The driving effect of energy demand evolution: From the perspective of heterogeneity in technology," Energy, Elsevier, vol. 275(C).
  76. Marin, Giovanni & Palma, Alessandro, 2017. "Technology invention and adoption in residential energy consumption," Energy Economics, Elsevier, vol. 66(C), pages 85-98.
  77. Zhao, Yueyang & Mao, Jinzhou, 2022. "Energy effects of non-energy policies: Minimum wage standard and enterprise energy efficiency in China," Resources Policy, Elsevier, vol. 79(C).
  78. Figge, Frank & Thorpe, Andrea Stevenson, 2019. "The symbiotic rebound effect in the circular economy," Ecological Economics, Elsevier, vol. 163(C), pages 61-69.
  79. Kropp, Cordula, 2018. "Sustainable innovations: Theories, conflicts and strategies," Research Contributions to Organizational Sociology and Innovation Studies, SOI Discussion Papers 2018-02, University of Stuttgart, Institute for Social Sciences, Department of Organizational Sociology and Innovation Studies.
  80. Ahmann, Lara & Banning, Maximilian & Lutz, Christian, 2022. "Modeling rebound effects and counteracting policies for German industries," Ecological Economics, Elsevier, vol. 197(C).
  81. Zhu, Lin & Cunningham, Scott W., 2022. "Unveiling the knowledge structure of technological forecasting and social change (1969–2020) through an NMF-based hierarchical topic model," Technological Forecasting and Social Change, Elsevier, vol. 174(C).
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.