IDEAS home Printed from https://ideas.repec.org/r/eee/rensus/v16y2012i7p5309-5318.html
   My bibliography  Save this item

A review of research on the Kalina cycle

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Yu, Zeting & Su, Ruizhi & Feng, Chunyu, 2020. "Thermodynamic analysis and multi-objective optimization of a novel power generation system driven by geothermal energy," Energy, Elsevier, vol. 199(C).
  2. Zare, V. & Mahmoudi, S.M.S., 2015. "A thermodynamic comparison between organic Rankine and Kalina cycles for waste heat recovery from the Gas Turbine-Modular Helium Reactor," Energy, Elsevier, vol. 79(C), pages 398-406.
  3. Yari, M. & Mehr, A.S. & Zare, V. & Mahmoudi, S.M.S. & Rosen, M.A., 2015. "Exergoeconomic comparison of TLC (trilateral Rankine cycle), ORC (organic Rankine cycle) and Kalina cycle using a low grade heat source," Energy, Elsevier, vol. 83(C), pages 712-722.
  4. Dereje S. Ayou & Valerie Eveloy, 2020. "Integration of Municipal Air-Conditioning, Power, and Gas Supplies Using an LNG Cold Exergy-Assisted Kalina Cycle System," Energies, MDPI, vol. 13(18), pages 1-31, September.
  5. Ruixiong Li & Huanran Wang & Erren Yao & Shuyu Zhang, 2016. "Thermo-Economic Comparison and Parametric Optimizations among Two Compressed Air Energy Storage System Based on Kalina Cycle and ORC," Energies, MDPI, vol. 10(1), pages 1-19, December.
  6. Seshie, Yao M. & N’Tsoukpoe, Kokouvi Edem & Neveu, Pierre & Coulibaly, Yézouma & Azoumah, Yao K., 2018. "Small scale concentrating solar plants for rural electrification," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 195-209.
  7. Steven Lecompte & Oyeniyi A. Oyewunmi & Christos N. Markides & Marija Lazova & Alihan Kaya & Martijn Van den Broek & Michel De Paepe, 2017. "Case Study of an Organic Rankine Cycle (ORC) for Waste Heat Recovery from an Electric Arc Furnace (EAF)," Energies, MDPI, vol. 10(5), pages 1-16, May.
  8. Huster, Wolfgang R. & Schweidtmann, Artur M. & Mitsos, Alexander, 2020. "Globally optimal working fluid mixture composition for geothermal power cycles," Energy, Elsevier, vol. 212(C).
  9. Yoon, Jung-In & Seol, Sung-Hoon & Son, Chang-Hyo & Jung, Suk-Ho & Kim, Young-Bok & Lee, Ho-Saeng & Kim, Hyeon-Ju & Moon, Jung-Hyun, 2017. "Analysis of the high-efficiency EP-OTEC cycle using R152a," Renewable Energy, Elsevier, vol. 105(C), pages 366-373.
  10. Chen, X. & Sun, L.N. & Du, S., 2022. "Analysis and optimization on a modified ammonia-water power cycle for more efficient power generation," Energy, Elsevier, vol. 241(C).
  11. Larsen, Ulrik & Nguyen, Tuong-Van & Knudsen, Thomas & Haglind, Fredrik, 2014. "System analysis and optimisation of a Kalina split-cycle for waste heat recovery on large marine diesel engines," Energy, Elsevier, vol. 64(C), pages 484-494.
  12. Pezzuolo, Alex & Benato, Alberto & Stoppato, Anna & Mirandola, Alberto, 2016. "The ORC-PD: A versatile tool for fluid selection and Organic Rankine Cycle unit design," Energy, Elsevier, vol. 102(C), pages 605-620.
  13. Han, Wei & Chen, Qiang & Sun, Liuli & Ma, Sijun & Zhao, Ting & Zheng, Danxing & Jin, Hongguang, 2014. "Experimental studies on a combined refrigeration/power generation system activated by low-grade heat," Energy, Elsevier, vol. 74(C), pages 59-66.
  14. Hu, Zheng & Wan, Yueru & Zhang, Chengbin & Chen, Yongping, 2022. "Compression-assisted absorption refrigeration using ocean thermal energy," Renewable Energy, Elsevier, vol. 186(C), pages 755-768.
  15. Zhu, Sipeng & Zhang, Kun & Deng, Kangyao, 2020. "A review of waste heat recovery from the marine engine with highly efficient bottoming power cycles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
  16. Aydin, Hakan & Lee, Ho-Saeng & Kim, Hyeon-Ju & Shin, Seung Kyoon & Park, Keunhan, 2014. "Off-design performance analysis of a closed-cycle ocean thermal energy conversion system with solar thermal preheating and superheating," Renewable Energy, Elsevier, vol. 72(C), pages 154-163.
  17. Andreasen, J.G. & Larsen, U. & Knudsen, T. & Haglind, F., 2015. "Design and optimization of a novel organic Rankine cycle with improved boiling process," Energy, Elsevier, vol. 91(C), pages 48-59.
  18. Dawo, Fabian & Wieland, Christoph & Spliethoff, Hartmut, 2019. "Kalina power plant part load modeling: Comparison of different approaches to model part load behavior and validation on real operating data," Energy, Elsevier, vol. 174(C), pages 625-637.
  19. Mosaffa, A.H. & Farshi, L. Garousi, 2018. "Thermodynamic and economic assessments of a novel CCHP cycle utilizing low-temperature heat sources for domestic applications," Renewable Energy, Elsevier, vol. 120(C), pages 134-150.
  20. Broniszewski, Mariusz & Werle, Sebastian, 2020. "CO2 reduction methods and evaluation of proposed energy efficiency improvements in Poland’s large industrial plant," Energy, Elsevier, vol. 202(C).
  21. Perera, A.T.D. & Hong, Tianzhen, 2023. "Vulnerability and resilience of urban energy ecosystems to extreme climate events: A systematic review and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
  22. Kim, Do-Yeop & Kim, You-Taek, 2017. "Preliminary design and performance analysis of a radial inflow turbine for ocean thermal energy conversion," Renewable Energy, Elsevier, vol. 106(C), pages 255-263.
  23. El Fil, Bachir & Garimella, Srinivas, 2021. "Waste heat recovery in commercial gas-fired tumble dryers," Energy, Elsevier, vol. 218(C).
  24. Chen, Yi & Han, Wei & Jin, Hongguang, 2017. "Proposal and analysis of a novel heat-driven absorption–compression refrigeration system at low temperatures," Applied Energy, Elsevier, vol. 185(P2), pages 2106-2116.
  25. Li, Xinguo & Zhang, Qilin & Li, Xiajie, 2013. "A Kalina cycle with ejector," Energy, Elsevier, vol. 54(C), pages 212-219.
  26. Yu, Zeting & Han, Jitian & Liu, Hai & Zhao, Hongxia, 2014. "Theoretical study on a novel ammonia–water cogeneration system with adjustable cooling to power ratios," Applied Energy, Elsevier, vol. 122(C), pages 53-61.
  27. Ito, Wataru & Takeshita, Keisuke & Amano, Yoshiharu, 2021. "Demonstration of the revised procedure to explore configurations for an arbitrary absorption cycle based on the cycle simplicity index," Energy, Elsevier, vol. 235(C).
  28. Saffari, Hamid & Sadeghi, Sadegh & Khoshzat, Mohsen & Mehregan, Pooyan, 2016. "Thermodynamic analysis and optimization of a geothermal Kalina cycle system using Artificial Bee Colony algorithm," Renewable Energy, Elsevier, vol. 89(C), pages 154-167.
  29. Mahdavi, Navid & Mojaver, Parisa & Khalilarya, Shahram, 2022. "Multi-objective optimization of power, CO2 emission and exergy efficiency of a novel solar-assisted CCHP system using RSM and TOPSIS coupled method," Renewable Energy, Elsevier, vol. 185(C), pages 506-524.
  30. Kyoung Hoon Kim, 2019. "Thermodynamic Analysis of Kalina Based Power and Cooling Cogeneration Cycle Employed Once Through Configuration," Energies, MDPI, vol. 12(8), pages 1-17, April.
  31. Taimoor, Aqeel Ahmad & Muhammad, Ayyaz & Saleem, Waqas & Zain-ul-abdein, Muhammad, 2016. "Humidified exhaust recirculation for efficient combined cycle gas turbines," Energy, Elsevier, vol. 106(C), pages 356-366.
  32. Bao, Huashan & Ma, Zhiwei & Roskilly, Anthony Paul, 2017. "An optimised chemisorption cycle for power generation using low grade heat," Applied Energy, Elsevier, vol. 186(P3), pages 251-261.
  33. Meinel, Dominik & Wieland, Christoph & Spliethoff, Hartmut, 2014. "Economic comparison of ORC (Organic Rankine cycle) processes at different scales," Energy, Elsevier, vol. 74(C), pages 694-706.
  34. Moya, Diego & Aldás, Clay & Kaparaju, Prasad, 2018. "Geothermal energy: Power plant technology and direct heat applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 889-901.
  35. Zhu, Sipeng & Ma, Zetai & Zhang, Kun & Deng, Kangyao, 2020. "Energy and exergy analysis of the combined cycle power plant recovering waste heat from the marine two-stroke engine under design and off-design conditions," Energy, Elsevier, vol. 210(C).
  36. Parham, Kiyan & Alimoradiyan, Hamed & Assadi, Mohsen, 2017. "Energy, exergy and environmental analysis of a novel combined system producing power, water and hydrogen," Energy, Elsevier, vol. 134(C), pages 882-892.
  37. Chen, Yaping & Guo, Zhanwei & Wu, Jiafeng & Zhang, Zhi & Hua, Junye, 2015. "Energy and exergy analysis of integrated system of ammonia–water Kalina–Rankine cycle," Energy, Elsevier, vol. 90(P2), pages 2028-2037.
  38. Varga, Zoltán & Palotai, Balázs, 2017. "Comparison of low temperature waste heat recovery methods," Energy, Elsevier, vol. 137(C), pages 1286-1292.
  39. Ziviani, Davide & Beyene, Asfaw & Venturini, Mauro, 2014. "Advances and challenges in ORC systems modeling for low grade thermal energy recovery," Applied Energy, Elsevier, vol. 121(C), pages 79-95.
  40. Varma, G.V. Pradeep & Srinivas, T., 2017. "Power generation from low temperature heat recovery," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 402-414.
  41. Oyewunmi, Oyeniyi A. & Kirmse, Christoph J.W. & Haslam, Andrew J. & Müller, Erich A. & Markides, Christos N., 2017. "Working-fluid selection and performance investigation of a two-phase single-reciprocating-piston heat-conversion engine," Applied Energy, Elsevier, vol. 186(P3), pages 376-395.
  42. Bao, Junjiang & Zhao, Li, 2012. "Exergy analysis and parameter study on a novel auto-cascade Rankine cycle," Energy, Elsevier, vol. 48(1), pages 539-547.
  43. Han, Wei & Sun, Liuli & Zheng, Danxing & Jin, Hongguang & Ma, Sijun & Jing, Xuye, 2013. "New hybrid absorption–compression refrigeration system based on cascade use of mid-temperature waste heat," Applied Energy, Elsevier, vol. 106(C), pages 383-390.
  44. Zheng, Danxing & Jing, Xuye, 2013. "Chemical amplifier and energy utilization principles of heat conversion cycle systems," Energy, Elsevier, vol. 63(C), pages 180-188.
  45. Kyoung Hoon Kim & Chul Ho Han & Hyung Jong Ko, 2018. "Comparative Thermodynamic Analysis of Kalina and Kalina Flash Cycles for Utilizing Low-Grade Heat Sources," Energies, MDPI, vol. 11(12), pages 1-14, November.
  46. Lu, Yiji & Wang, Yaodong & Bao, Huashan & Yuan, Ye & Wang, Liwei & Roskilly, Anthony Paul, 2015. "Analysis of an optimal resorption cogeneration using mass and heat recovery processes," Applied Energy, Elsevier, vol. 160(C), pages 892-901.
  47. Zhang, Wei & Li, Ye & Wu, Xiaoni & Guo, Shihao, 2018. "Review of the applied mechanical problems in ocean thermal energy conversion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 231-244.
  48. Oluleye, Gbemi & Jobson, Megan & Smith, Robin & Perry, Simon J., 2016. "Evaluating the potential of process sites for waste heat recovery," Applied Energy, Elsevier, vol. 161(C), pages 627-646.
  49. Vaclav Novotny & David J. Szucs & Jan Špale & Hung-Yin Tsai & Michal Kolovratnik, 2021. "Absorption Power and Cooling Combined Cycle with an Aqueous Salt Solution as a Working Fluid and a Technically Feasible Configuration," Energies, MDPI, vol. 14(12), pages 1-26, June.
  50. Le, Van Long & Feidt, Michel & Kheiri, Abdelhamid & Pelloux-Prayer, Sandrine, 2014. "Performance optimization of low-temperature power generation by supercritical ORCs (organic Rankine cycles) using low GWP (global warming potential) working fluids," Energy, Elsevier, vol. 67(C), pages 513-526.
  51. Kazemiani-Najafabadi, Parisa & Amiri Rad, Ehsan, 2021. "Multi-objective optimization of a novel offshore CHP plant based on a 3E analysis," Energy, Elsevier, vol. 224(C).
  52. Lion, Simone & Michos, Constantine N. & Vlaskos, Ioannis & Rouaud, Cedric & Taccani, Rodolfo, 2017. "A review of waste heat recovery and Organic Rankine Cycles (ORC) in on-off highway vehicle Heavy Duty Diesel Engine applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 691-708.
  53. Chowdhury, Jahedul Islam & Hu, Yukun & Haltas, Ismail & Balta-Ozkan, Nazmiye & Matthew, George Jr. & Varga, Liz, 2018. "Reducing industrial energy demand in the UK: A review of energy efficiency technologies and energy saving potential in selected sectors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 1153-1178.
  54. Lei, Biao & Wang, Wei & Wu, Yu-Ting & Ma, Chong-Fang & Wang, Jing-Fu & Zhang, Lei & Li, Chuang & Zhao, Ying-Kun & Zhi, Rui-Ping, 2016. "Development and experimental study on a single screw expander integrated into an Organic Rankine Cycle," Energy, Elsevier, vol. 116(P1), pages 43-52.
  55. Zhu, Zilong & Zhang, Zhi & Chen, Yaping & Wu, Jiafeng, 2016. "Parameter optimization of dual-pressure vaporization Kalina cycle with second evaporator parallel to economizer," Energy, Elsevier, vol. 112(C), pages 420-429.
  56. Kim, Kyoung Hoon & Ko, Hyung Jong & Kim, Kyoungjin, 2014. "Assessment of pinch point characteristics in heat exchangers and condensers of ammonia–water based power cycles," Applied Energy, Elsevier, vol. 113(C), pages 970-981.
  57. Salemi, Sina & Torabi, Morteza & Haghparast, Arash Kashani, 2022. "Technoeconomical investigation of energy harvesting from MIDREX® process waste heat using Kalina cycle in direct reduction iron process," Energy, Elsevier, vol. 239(PE).
  58. Victor, Rachel Anne & Kim, Jin-Kuk & Smith, Robin, 2013. "Composition optimisation of working fluids for Organic Rankine Cycles and Kalina cycles," Energy, Elsevier, vol. 55(C), pages 114-126.
  59. Lin, Yuancheng & Chong, Chin Hao & Ma, Linwei & Li, Zheng & Ni, Weidou, 2022. "Quantification of waste heat potential in China: A top-down Societal Waste Heat Accounting Model," Energy, Elsevier, vol. 261(PB).
  60. Chen, X. & Wang, R.Z. & Wang, L.W. & Du, S., 2017. "A modified ammonia-water power cycle using a distillation stage for more efficient power generation," Energy, Elsevier, vol. 138(C), pages 1-11.
  61. Moradpoor, Iraj & Ebrahimi, Masood, 2019. "Thermo-environ analyses of a novel trigeneration cycle based on clean technologies of molten carbonate fuel cell, stirling engine and Kalina cycle," Energy, Elsevier, vol. 185(C), pages 1005-1016.
  62. Chen, Ruihua & Deng, Shuai & Xu, Weicong & Zhao, Li, 2020. "A graphic analysis method of electrochemical systems for low-grade heat harvesting from a perspective of thermodynamic cycles," Energy, Elsevier, vol. 191(C).
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.