IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v235y2021ics0360544221014201.html
   My bibliography  Save this article

Demonstration of the revised procedure to explore configurations for an arbitrary absorption cycle based on the cycle simplicity index

Author

Listed:
  • Ito, Wataru
  • Takeshita, Keisuke
  • Amano, Yoshiharu

Abstract

Energy-conversion systems are optimized in three stages: synthesis (structure, configuration), design (operating characteristics at the rated load), and operation. The performance of energy systems, including the thermal efficiency, can be improved by increasing the complexity of the cycle configuration. Therefore, when two thermodynamic cycles are compared, they must be evaluated at the same level of their complexity. The SYNTHSEP methodology, which presents a general procedure to derive a complex thermodynamic cycle configuration operating with a pure working fluid, has been proposed in the literature. In this methodology, a cycle configuration is represented as a superimposition of elementary thermodynamic cycles (ETC), consisting of four basic processes (compression, heating, expansion, and cooling). This methodology has been formulated and codified for the derivation of candidate configurations, which are then narrowed down to the effective candidates. The complexity of the cycle configuration can be expressed by the number of elementary thermodynamic cycles. In previous works, the authors expanded the methodology to cover the absorption refrigeration cycle, which is also represented by superimposing elementary thermodynamic cycles operating with different working fluids. The purpose of this paper is to propose a revised methodology for configuration optimization that can be applied to any absorption cycle, including absorption power cycles, such as the Kalina cycle. The cycle complexity defined using a cycle simplicity index based on the number of ETCs and the number of mixing and splitting points of the ETC. The authors have derived candidate configurations for the simplest absorption cycle, defined by this index. Then, the proposed methodology for configuration optimization is demonstrated by performing a case study on an absorption power cycle and refrigeration cycle. Thus, designers can compare the configurations of absorption power and cooling or heating cycles with certified simplicity. This study establishes a methodology for configuration optimization and maximizes an objective function for an arbitrary absorption cycle. In principle, this methodology can also be applied to the absorption power and cooling cycle.

Suggested Citation

  • Ito, Wataru & Takeshita, Keisuke & Amano, Yoshiharu, 2021. "Demonstration of the revised procedure to explore configurations for an arbitrary absorption cycle based on the cycle simplicity index," Energy, Elsevier, vol. 235(C).
  • Handle: RePEc:eee:energy:v:235:y:2021:i:c:s0360544221014201
    DOI: 10.1016/j.energy.2021.121172
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221014201
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.121172?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kosuke Seki & Keisuke Takeshita & Yoshiharu Amano, 2019. "Development of Complex Energy Systems with Absorption Technology by Combining Elementary Processes," Energies, MDPI, vol. 12(3), pages 1-20, February.
    2. Lazzaretto, Andrea & Manente, Giovanni & Toffolo, Andrea, 2018. "SYNTHSEP: A general methodology for the synthesis of energy system configurations beyond superstructures," Energy, Elsevier, vol. 147(C), pages 924-949.
    3. Toffolo, Andrea, 2014. "A synthesis/design optimization algorithm for Rankine cycle based energy systems," Energy, Elsevier, vol. 66(C), pages 115-127.
    4. Lazzaretto, Andrea & Toffolo, Andrea, 2008. "A method to separate the problem of heat transfer interactions in the synthesis of thermal systems," Energy, Elsevier, vol. 33(2), pages 163-170.
    5. Zhang, Xinxin & He, Maogang & Zhang, Ying, 2012. "A review of research on the Kalina cycle," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 5309-5318.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Volpato, G. & Rech, S. & Lazzaretto, A. & Roumpedakis, T.C. & Karellas, S. & Frangopoulos, C.A., 2022. "Conceptual development and optimization of the main absorption systems configurations," Renewable Energy, Elsevier, vol. 182(C), pages 685-701.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andrea Lazzaretto & Andrea Toffolo, 2019. "Optimum Choice of Energy System Configuration and Storages for a Proper Match between Energy Conversion and Demands," Energies, MDPI, vol. 12(20), pages 1-6, October.
    2. Li, Xiaoya & Xu, Bin & Tian, Hua & Shu, Gequn, 2021. "Towards a novel holistic design of organic Rankine cycle (ORC) systems operating under heat source fluctuations and intermittency," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    3. Frangopoulos, Christos A., 2018. "Recent developments and trends in optimization of energy systems," Energy, Elsevier, vol. 164(C), pages 1011-1020.
    4. George N. Sakalis & George J. Tzortzis & Christos A. Frangopoulos, 2019. "Intertemporal Static and Dynamic Optimization of Synthesis, Design, and Operation of Integrated Energy Systems of Ships," Energies, MDPI, vol. 12(5), pages 1-50, March.
    5. Giovanni Manente & Mário Costa, 2020. "On the Conceptual Design of Novel Supercritical CO 2 Power Cycles for Waste Heat Recovery," Energies, MDPI, vol. 13(2), pages 1-31, January.
    6. Ligang Wang & Zhiping Yang & Shivom Sharma & Alberto Mian & Tzu-En Lin & George Tsatsaronis & François Maréchal & Yongping Yang, 2018. "A Review of Evaluation, Optimization and Synthesis of Energy Systems: Methodology and Application to Thermal Power Plants," Energies, MDPI, vol. 12(1), pages 1-53, December.
    7. Volpato, G. & Rech, S. & Lazzaretto, A. & Roumpedakis, T.C. & Karellas, S. & Frangopoulos, C.A., 2022. "Conceptual development and optimization of the main absorption systems configurations," Renewable Energy, Elsevier, vol. 182(C), pages 685-701.
    8. Lin, Shan & Zhao, Li & Deng, Shuai & Zhao, Dongpeng & Wang, Wei & Chen, Mengchao, 2020. "Intelligent collaborative attainment of structure configuration and fluid selection for the Organic Rankine cycle," Applied Energy, Elsevier, vol. 264(C).
    9. Zhao, Dongpeng & Deng, Shuai & Zhao, Li & Xu, Weicong & Zhao, Ruikai & Wang, Wei, 2020. "From 1 to N: A computer-aided case study of thermodynamic cycle construction based on thermodynamic process combination," Energy, Elsevier, vol. 210(C).
    10. Lazzaretto, Andrea & Manente, Giovanni & Toffolo, Andrea, 2018. "SYNTHSEP: A general methodology for the synthesis of energy system configurations beyond superstructures," Energy, Elsevier, vol. 147(C), pages 924-949.
    11. Kosuke Seki & Keisuke Takeshita & Yoshiharu Amano, 2019. "Development of Complex Energy Systems with Absorption Technology by Combining Elementary Processes," Energies, MDPI, vol. 12(3), pages 1-20, February.
    12. Tanaka, Yasuto & Mesfun, Sennai & Umeki, Kentaro & Toffolo, Andrea & Tamaura, Yutaka & Yoshikawa, Kunio, 2015. "Thermodynamic performance of a hybrid power generation system using biomass gasification and concentrated solar thermal processes," Applied Energy, Elsevier, vol. 160(C), pages 664-672.
    13. Dereje S. Ayou & Valerie Eveloy, 2020. "Integration of Municipal Air-Conditioning, Power, and Gas Supplies Using an LNG Cold Exergy-Assisted Kalina Cycle System," Energies, MDPI, vol. 13(18), pages 1-31, September.
    14. Huster, Wolfgang R. & Schweidtmann, Artur M. & Mitsos, Alexander, 2020. "Globally optimal working fluid mixture composition for geothermal power cycles," Energy, Elsevier, vol. 212(C).
    15. Yoon, Jung-In & Seol, Sung-Hoon & Son, Chang-Hyo & Jung, Suk-Ho & Kim, Young-Bok & Lee, Ho-Saeng & Kim, Hyeon-Ju & Moon, Jung-Hyun, 2017. "Analysis of the high-efficiency EP-OTEC cycle using R152a," Renewable Energy, Elsevier, vol. 105(C), pages 366-373.
    16. Lazzaretto, Andrea & Morandin, Matteo & Toffolo, Andrea, 2012. "Methodological aspects in synthesis of combined sugar and ethanol production plant," Energy, Elsevier, vol. 41(1), pages 165-174.
    17. Zhu, Sipeng & Ma, Zetai & Zhang, Kun & Deng, Kangyao, 2020. "Energy and exergy analysis of the combined cycle power plant recovering waste heat from the marine two-stroke engine under design and off-design conditions," Energy, Elsevier, vol. 210(C).
    18. Shen, Feifei & Zhao, Liang & Du, Wenli & Zhong, Weimin & Qian, Feng, 2020. "Large-scale industrial energy systems optimization under uncertainty: A data-driven robust optimization approach," Applied Energy, Elsevier, vol. 259(C).
    19. Halmschlager, Daniel & Beck, Anton & Knöttner, Sophie & Koller, Martin & Hofmann, René, 2022. "Combined optimization for retrofitting of heat recovery and thermal energy supply in industrial systems," Applied Energy, Elsevier, vol. 305(C).
    20. Kyoung Hoon Kim & Chul Ho Han & Hyung Jong Ko, 2018. "Comparative Thermodynamic Analysis of Kalina and Kalina Flash Cycles for Utilizing Low-Grade Heat Sources," Energies, MDPI, vol. 11(12), pages 1-14, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:235:y:2021:i:c:s0360544221014201. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.