IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i3p495-d203483.html
   My bibliography  Save this article

Development of Complex Energy Systems with Absorption Technology by Combining Elementary Processes

Author

Listed:
  • Kosuke Seki

    (Department of Applied Mechanics, Waseda University, Tokyo 162-0044, Japan)

  • Keisuke Takeshita

    (Waseda Research Institute for Science and Engineering, Tokyo 162-0044, Japan)

  • Yoshiharu Amano

    (Department of Applied Mechanics, Waseda University, Tokyo 162-0044, Japan
    Advanced Collaborative Research Organization for Smart Society, Tokyo 162-0044, Japan)

Abstract

Optimal design of energy systems ultimately aims to develop a methodology to realize an energy system that utilizes available resources to generate maximum product with minimum components. For this aim, several researches attempt to decide the optimal system configuration as a problem of decomposing each energy system into primitive process elements. Then, they search the optimal combination sequentially from the minimum number of constituent elements. This paper proposes a bottom-up procedure to define and explore configurations by combining elementary processes for energy systems with absorption technology, which is widely applied as a heat driven technology and important for improving system’s energy efficiency and utilizing alternative energy resources. Two examples of application are presented to show the capability of the proposed methodology to find basic configurations that can generate the maximum product. The demonstration shows that the existing absorption systems, which would be calculated based on the experience of designers, could be derived by performing optimization with the synthesis methodology automatically under the simplified/idealized operating conditions. The proposed bottom-up methodology is significant for realizing an optimized absorption system. With this methodology, engineers will be able to predict all possible configurations and identify a simple yet feasible optimal system configuration.

Suggested Citation

  • Kosuke Seki & Keisuke Takeshita & Yoshiharu Amano, 2019. "Development of Complex Energy Systems with Absorption Technology by Combining Elementary Processes," Energies, MDPI, vol. 12(3), pages 1-20, February.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:3:p:495-:d:203483
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/3/495/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/3/495/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wu, Wei & Wang, Baolong & Shi, Wenxing & Li, Xianting, 2014. "An overview of ammonia-based absorption chillers and heat pumps," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 681-707.
    2. Cui, Chengtian & Li, Xingang & Sui, Hong & Sun, Jinsheng, 2017. "Optimization of coal-based methanol distillation scheme using process superstructure method to maximize energy efficiency," Energy, Elsevier, vol. 119(C), pages 110-120.
    3. Kwon, Sunghoon & Won, Wangyun & Kim, Jiyong, 2016. "A superstructure model of an isolated power supply system using renewable energy: Development and application to Jeju Island, Korea," Renewable Energy, Elsevier, vol. 97(C), pages 177-188.
    4. Toffolo, Andrea, 2014. "A synthesis/design optimization algorithm for Rankine cycle based energy systems," Energy, Elsevier, vol. 66(C), pages 115-127.
    5. Lazzaretto, Andrea & Toffolo, Andrea, 2008. "A method to separate the problem of heat transfer interactions in the synthesis of thermal systems," Energy, Elsevier, vol. 33(2), pages 163-170.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Andrea Lazzaretto & Andrea Toffolo, 2019. "Optimum Choice of Energy System Configuration and Storages for a Proper Match between Energy Conversion and Demands," Energies, MDPI, vol. 12(20), pages 1-6, October.
    2. Volpato, G. & Rech, S. & Lazzaretto, A. & Roumpedakis, T.C. & Karellas, S. & Frangopoulos, C.A., 2022. "Conceptual development and optimization of the main absorption systems configurations," Renewable Energy, Elsevier, vol. 182(C), pages 685-701.
    3. Ito, Wataru & Takeshita, Keisuke & Amano, Yoshiharu, 2021. "Demonstration of the revised procedure to explore configurations for an arbitrary absorption cycle based on the cycle simplicity index," Energy, Elsevier, vol. 235(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Xiaoya & Xu, Bin & Tian, Hua & Shu, Gequn, 2021. "Towards a novel holistic design of organic Rankine cycle (ORC) systems operating under heat source fluctuations and intermittency," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    2. Frangopoulos, Christos A., 2018. "Recent developments and trends in optimization of energy systems," Energy, Elsevier, vol. 164(C), pages 1011-1020.
    3. George N. Sakalis & George J. Tzortzis & Christos A. Frangopoulos, 2019. "Intertemporal Static and Dynamic Optimization of Synthesis, Design, and Operation of Integrated Energy Systems of Ships," Energies, MDPI, vol. 12(5), pages 1-50, March.
    4. Giovanni Manente & Mário Costa, 2020. "On the Conceptual Design of Novel Supercritical CO 2 Power Cycles for Waste Heat Recovery," Energies, MDPI, vol. 13(2), pages 1-31, January.
    5. Lazzaretto, Andrea & Manente, Giovanni & Toffolo, Andrea, 2018. "SYNTHSEP: A general methodology for the synthesis of energy system configurations beyond superstructures," Energy, Elsevier, vol. 147(C), pages 924-949.
    6. Ligang Wang & Zhiping Yang & Shivom Sharma & Alberto Mian & Tzu-En Lin & George Tsatsaronis & François Maréchal & Yongping Yang, 2018. "A Review of Evaluation, Optimization and Synthesis of Energy Systems: Methodology and Application to Thermal Power Plants," Energies, MDPI, vol. 12(1), pages 1-53, December.
    7. Ito, Wataru & Takeshita, Keisuke & Amano, Yoshiharu, 2021. "Demonstration of the revised procedure to explore configurations for an arbitrary absorption cycle based on the cycle simplicity index," Energy, Elsevier, vol. 235(C).
    8. Lin, Shan & Zhao, Li & Deng, Shuai & Zhao, Dongpeng & Wang, Wei & Chen, Mengchao, 2020. "Intelligent collaborative attainment of structure configuration and fluid selection for the Organic Rankine cycle," Applied Energy, Elsevier, vol. 264(C).
    9. Andrea Lazzaretto & Andrea Toffolo, 2019. "Optimum Choice of Energy System Configuration and Storages for a Proper Match between Energy Conversion and Demands," Energies, MDPI, vol. 12(20), pages 1-6, October.
    10. Tanaka, Yasuto & Mesfun, Sennai & Umeki, Kentaro & Toffolo, Andrea & Tamaura, Yutaka & Yoshikawa, Kunio, 2015. "Thermodynamic performance of a hybrid power generation system using biomass gasification and concentrated solar thermal processes," Applied Energy, Elsevier, vol. 160(C), pages 664-672.
    11. Lazzaretto, Andrea & Morandin, Matteo & Toffolo, Andrea, 2012. "Methodological aspects in synthesis of combined sugar and ethanol production plant," Energy, Elsevier, vol. 41(1), pages 165-174.
    12. Valerie Eveloy & Dereje S. Ayou, 2019. "Sustainable District Cooling Systems: Status, Challenges, and Future Opportunities, with Emphasis on Cooling-Dominated Regions," Energies, MDPI, vol. 12(2), pages 1-64, January.
    13. Shen, Feifei & Zhao, Liang & Du, Wenli & Zhong, Weimin & Qian, Feng, 2020. "Large-scale industrial energy systems optimization under uncertainty: A data-driven robust optimization approach," Applied Energy, Elsevier, vol. 259(C).
    14. Patrick Linke & Athanasios I. Papadopoulos & Panos Seferlis, 2015. "Systematic Methods for Working Fluid Selection and the Design, Integration and Control of Organic Rankine Cycles—A Review," Energies, MDPI, vol. 8(6), pages 1-47, May.
    15. Sakalis, George N. & Frangopoulos, Christos A., 2018. "Intertemporal optimization of synthesis, design and operation of integrated energy systems of ships: General method and application on a system with Diesel main engines," Applied Energy, Elsevier, vol. 226(C), pages 991-1008.
    16. Jain, Vaibhav & Sachdeva, Gulshan & Kachhwaha, S.S., 2015. "Thermodynamic modelling and parametric study of a low temperature vapour compression-absorption system based on modified Gouy-Stodola equation," Energy, Elsevier, vol. 79(C), pages 407-418.
    17. Wu, Xi & Xu, Shiming & Jiang, Mengnan, 2018. "Development of bubble absorption refrigeration technology: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3468-3482.
    18. Ahmed, Shoaib & Li, Tie & Yi, Ping & Chen, Run, 2023. "Environmental impact assessment of green ammonia-powered very large tanker ship for decarbonized future shipping operations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    19. Wu, Wei & Bai, Yu & Huang, Hongyu & Ding, Zhixiong & Deng, Lisheng, 2019. "Charging and discharging characteristics of absorption thermal energy storage using ionic-liquid-based working fluids," Energy, Elsevier, vol. 189(C).
    20. Ma, Qian & Chang, Yuan & Yuan, Bo & Song, Zhaozheng & Xue, Jinjun & Jiang, Qingzhe, 2022. "Utilizing carbon dioxide from refinery flue gas for methanol production: System design and assessment," Energy, Elsevier, vol. 249(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:3:p:495-:d:203483. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.