IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v97y2016icp177-188.html
   My bibliography  Save this article

A superstructure model of an isolated power supply system using renewable energy: Development and application to Jeju Island, Korea

Author

Listed:
  • Kwon, Sunghoon
  • Won, Wangyun
  • Kim, Jiyong

Abstract

In this study, we aim to develop a superstructure-based optimization model using mixed integer linear programming (MILP) to determine the optimal combination and sizing for a hybrid renewable energy system to be used in an isolated area. The developed model has a three-layered energy structure to reflect the current reality in which energy production and consumption sites are generally separate. A variety of economic factors, including distance between facilities and an installation area, are considered for a more accurate estimation of the total annualized cost. Two types of optimization models, i.e., with and without a battery, are proposed to evaluate the economic and technical effects of a storage device to resolve operation issues caused by intermittent resources. An application case study on Jeju Island, Korea, confirms that the proposed model is suitable for decision making at the planning stage of a renewable energy system.

Suggested Citation

  • Kwon, Sunghoon & Won, Wangyun & Kim, Jiyong, 2016. "A superstructure model of an isolated power supply system using renewable energy: Development and application to Jeju Island, Korea," Renewable Energy, Elsevier, vol. 97(C), pages 177-188.
  • Handle: RePEc:eee:renene:v:97:y:2016:i:c:p:177-188
    DOI: 10.1016/j.renene.2016.05.074
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148116304840
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shaahid, S.M. & Elhadidy, M.A., 2007. "Technical and economic assessment of grid-independent hybrid photovoltaic-diesel-battery power systems for commercial loads in desert environments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(8), pages 1794-1810, October.
    2. Zhou, Wei & Lou, Chengzhi & Li, Zhongshi & Lu, Lin & Yang, Hongxing, 2010. "Current status of research on optimum sizing of stand-alone hybrid solar-wind power generation systems," Applied Energy, Elsevier, vol. 87(2), pages 380-389, February.
    3. Phuangpornpitak, N. & Kumar, S., 2007. "PV hybrid systems for rural electrification in Thailand," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(7), pages 1530-1543, September.
    4. Kucuksari, Sadik & Khaleghi, Amirreza M. & Hamidi, Maryam & Zhang, Ye & Szidarovszky, Ferenc & Bayraksan, Guzin & Son, Young-Jun, 2014. "An Integrated GIS, optimization and simulation framework for optimal PV size and location in campus area environments," Applied Energy, Elsevier, vol. 113(C), pages 1601-1613.
    5. Ashok, S., 2007. "Optimised model for community-based hybrid energy system," Renewable Energy, Elsevier, vol. 32(7), pages 1155-1164.
    6. Ould Bilal, B. & Sambou, V. & Ndiaye, P.A. & Kébé, C.M.F. & Ndongo, M., 2010. "Optimal design of a hybrid solar–wind-battery system using the minimization of the annualized cost system and the minimization of the loss of power supply probability (LPSP)," Renewable Energy, Elsevier, vol. 35(10), pages 2388-2390.
    7. Mathiesen, Brian Vad & Lund, Henrik & Karlsson, Kenneth, 2011. "100% Renewable energy systems, climate mitigation and economic growth," Applied Energy, Elsevier, vol. 88(2), pages 488-501, February.
    8. Katsaprakakis, Dimitris Al. & Papadakis, Nikos & Kozirakis, George & Minadakis, Yiannis & Christakis, Dimitris & Kondaxakis, Konstantinos, 2009. "Electricity supply on the island of Dia based on renewable energy sources (R.E.S.)," Applied Energy, Elsevier, vol. 86(4), pages 516-527, April.
    9. Yang, Hongxing & Wei, Zhou & Chengzhi, Lou, 2009. "Optimal design and techno-economic analysis of a hybrid solar-wind power generation system," Applied Energy, Elsevier, vol. 86(2), pages 163-169, February.
    10. Ekren, Orhan & Ekren, Banu Y., 2010. "Size optimization of a PV/wind hybrid energy conversion system with battery storage using simulated annealing," Applied Energy, Elsevier, vol. 87(2), pages 592-598, February.
    11. Erdinc, O. & Uzunoglu, M., 2012. "Optimum design of hybrid renewable energy systems: Overview of different approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(3), pages 1412-1425.
    12. Senjyu, Tomonobu & Hayashi, Daisuke & Yona, Atsushi & Urasaki, Naomitsu & Funabashi, Toshihisa, 2007. "Optimal configuration of power generating systems in isolated island with renewable energy," Renewable Energy, Elsevier, vol. 32(11), pages 1917-1933.
    13. Connolly, D. & Lund, H. & Mathiesen, B.V. & Leahy, M., 2011. "The first step towards a 100% renewable energy-system for Ireland," Applied Energy, Elsevier, vol. 88(2), pages 502-507, February.
    14. Oh, Ki-Yong & Kim, Ji-Young & Lee, Jun-Shin & Ryu, Ki-Wahn, 2012. "Wind resource assessment around Korean Peninsula for feasibility study on 100 MW class offshore wind farm," Renewable Energy, Elsevier, vol. 42(C), pages 217-226.
    15. Daud, Abdel-Karim & Ismail, Mahmoud S., 2012. "Design of isolated hybrid systems minimizing costs and pollutant emissions," Renewable Energy, Elsevier, vol. 44(C), pages 215-224.
    16. Mellit, A. & Benghanem, M. & Kalogirou, S.A., 2007. "Modeling and simulation of a stand-alone photovoltaic system using an adaptive artificial neural network: Proposition for a new sizing procedure," Renewable Energy, Elsevier, vol. 32(2), pages 285-313.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kosuke Seki & Keisuke Takeshita & Yoshiharu Amano, 2019. "Development of Complex Energy Systems with Absorption Technology by Combining Elementary Processes," Energies, MDPI, Open Access Journal, vol. 12(3), pages 1-20, February.
    2. Liu, Jiahong & Mei, Chao & Wang, Hao & Shao, Weiwei & Xiang, Chenyao, 2018. "Powering an island system by renewable energy—A feasibility analysis in the Maldives," Applied Energy, Elsevier, vol. 227(C), pages 18-27.
    3. Jisook Lee & Yongho Son & Kwang Soon Lee & Wangyun Won, 2019. "Economic Analysis and Environmental Impact Assessment of Heat Pump-Assisted Distillation in a Gas Fractionation Unit," Energies, MDPI, Open Access Journal, vol. 12(5), pages 1-19, March.
    4. Kotzur, Leander & Markewitz, Peter & Robinius, Martin & Stolten, Detlef, 2018. "Time series aggregation for energy system design: Modeling seasonal storage," Applied Energy, Elsevier, vol. 213(C), pages 123-135.
    5. Mendoza-Vizcaino, Javier & Raza, Muhammad & Sumper, Andreas & Díaz-González, Francisco & Galceran-Arellano, Samuel, 2019. "Integral approach to energy planning and electric grid assessment in a renewable energy technology integration for a 50/50 target applied to a small island," Applied Energy, Elsevier, vol. 233, pages 524-543.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:97:y:2016:i:c:p:177-188. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.