IDEAS home Printed from https://ideas.repec.org/r/eee/energy/v59y2013icp743-753.html
   My bibliography  Save this item

Drivers of CO2 emissions in the former Soviet Union: A country level IPAT analysis from 1990 to 2010

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Jie-fang Dong & Qiang Wang & Chun Deng & Xing-min Wang & Xiao-lei Zhang, 2016. "How to Move China toward a Green-Energy Economy: From a Sector Perspective," Sustainability, MDPI, vol. 8(4), pages 1-18, April.
  2. Wang, Shaojian & Liu, Xiaoping & Zhou, Chunshan & Hu, Jincan & Ou, Jinpei, 2017. "Examining the impacts of socioeconomic factors, urban form, and transportation networks on CO2 emissions in China’s megacities," Applied Energy, Elsevier, vol. 185(P1), pages 189-200.
  3. Lijun Zhang & Caiyun Kou & Ji Zheng & Yu Li, 2018. "Decoupling Analysis of CO 2 Emissions in Transportation Sector from Economic Growth during 1995–2015 for Six Cities in Hebei, China," Sustainability, MDPI, vol. 10(11), pages 1-15, November.
  4. Ma, Xuejiao & Wang, Yong & Wang, Chen, 2017. "Low-carbon development of China's thermal power industry based on an international comparison: Review, analysis and forecast," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 942-970.
  5. Hassaballa, Hoda, 2014. "Testing for Granger causality between energy use and foreign direct investment Inflows in developing countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 417-426.
  6. Zilong Zhang & Bing Xue & Jiaxing Pang & Xingpeng Chen, 2016. "The Decoupling of Resource Consumption and Environmental Impact from Economic Growth in China: Spatial Pattern and Temporal Trend," Sustainability, MDPI, vol. 8(3), pages 1-13, February.
  7. Jeyhun I. Mikayilov & Marzio Galeotti & Fakhri J. Hasanov, 2018. "The Impact of Economic Growth on CO2 Emissions in Azerbaijan," IEFE Working Papers 102, IEFE, Center for Research on Energy and Environmental Economics and Policy, Universita' Bocconi, Milano, Italy.
  8. Wang, Yuan & Zhang, Chen & Lu, Aitong & Li, Li & He, Yanmin & ToJo, Junji & Zhu, Xiaodong, 2017. "A disaggregated analysis of the environmental Kuznets curve for industrial CO2 emissions in China," Applied Energy, Elsevier, vol. 190(C), pages 172-180.
  9. Hwang, In Chang, 2013. "Stochastic Kaya model and its applications," MPRA Paper 55099, University Library of Munich, Germany.
  10. Inácio Araúgo & Randall Jackson & Amir B. Ferreira Neto & Fernando Perobelli, 2018. "Environmental Costs of European Union Membership: A Structural Decomposition Analysis," Working Papers Working Paper 2018-04, Regional Research Institute, West Virginia University.
  11. Chen, Jiandong & Fan, Wei & Li, Ding & Liu, Xin & Song, Malin, 2020. "Driving factors of global carbon footprint pressure: Based on vegetation carbon sequestration," Applied Energy, Elsevier, vol. 267(C).
  12. Marco Quatrosi, 2022. "Clustering environmental performances, energy efficiency and clean energy patterns: a comparative static approach across EU Countries," SEEDS Working Papers 0722, SEEDS, Sustainability Environmental Economics and Dynamics Studies, revised Jul 2022.
  13. Cansino, José M. & Sánchez-Braza, Antonio & Rodríguez-Arévalo, María L., 2018. "How can Chile move away from a high carbon economy?," Energy Economics, Elsevier, vol. 69(C), pages 350-366.
  14. Xu, Xianshuo & Zhao, Tao & Liu, Nan & Kang, Jidong, 2014. "Changes of energy-related GHG emissions in China: An empirical analysis from sectoral perspective," Applied Energy, Elsevier, vol. 132(C), pages 298-307.
  15. Kang, Jidong & Zhao, Tao & Liu, Nan & Zhang, Xin & Xu, Xianshuo & Lin, Tao, 2014. "A multi-sectoral decomposition analysis of city-level greenhouse gas emissions: Case study of Tianjin, China," Energy, Elsevier, vol. 68(C), pages 562-571.
  16. Dai, Xiao-wen & Sun, Zhanli & Müller, Daniel, 2021. "Driving factors of direct greenhouse gas emissions from China’s pig industry from 1976 to 2016," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 20(1), pages 319-329.
  17. Fei Wang & Changjian Wang & Jing Chen & Zeng Li & Ling Li, 2020. "Examining the determinants of energy-related carbon emissions in Central Asia: country-level LMDI and EKC analysis during different phases," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(8), pages 7743-7769, December.
  18. Qingshan Yang & Jie Liu & Yu Zhang, 2017. "Decoupling Agricultural Nonpoint Source Pollution from Crop Production: A Case Study of Heilongjiang Land Reclamation Area, China," Sustainability, MDPI, vol. 9(6), pages 1-11, June.
  19. Yuliia Matiiuk & Mykolas Simas Poškus & Genovaitė Liobikienė, 2020. "The Implementation of Climate Change Policy in Post-Soviet Countries Achieving Long-Term Targets," Sustainability, MDPI, vol. 12(11), pages 1-24, June.
  20. Timma, Lelde & Zoss, Toms & Blumberga, Dagnija, 2016. "Life after the financial crisis. Energy intensity and energy use decomposition on sectorial level in Latvia," Applied Energy, Elsevier, vol. 162(C), pages 1586-1592.
  21. Annageldy Arazmuradov, 2016. "Economic prospect on carbon emissions in Commonwealth of Independent States," Economic Change and Restructuring, Springer, vol. 49(4), pages 395-427, November.
  22. Araújo, Inácio Fernandes de & Jackson, Randall W. & Ferreira Neto, Amir B. & Perobelli, Fernando S., 2020. "European union membership and CO2 emissions: A structural decomposition analysis," Structural Change and Economic Dynamics, Elsevier, vol. 55(C), pages 190-203.
  23. Wei Li & Guomin Li & Rongxia Zhang & Wen Sun & Wen Wu & Baihui Jin & Pengfei Cui, 2017. "Carbon Reduction Potential of Resource-Dependent Regions Based on Simulated Annealing Programming Algorithm," Sustainability, MDPI, vol. 9(7), pages 1-17, July.
  24. Qiang Wang & Rongrong Li & Rui Jiang, 2016. "Decoupling and Decomposition Analysis of Carbon Emissions from Industry: A Case Study from China," Sustainability, MDPI, vol. 8(10), pages 1-17, October.
  25. Fernández González, P. & Presno, M.J. & Landajo, M., 2015. "Regional and sectoral attribution to percentage changes in the European Divisia carbonization index," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1437-1452.
  26. Changjian Wang & Fei Wang, 2015. "Structural Decomposition Analysis of Carbon Emissions and Policy Recommendations for Energy Sustainability in Xinjiang," Sustainability, MDPI, vol. 7(6), pages 1-20, June.
  27. Štreimikienė, Dalia & Balezentis, Tomas, 2016. "Kaya identity for analysis of the main drivers of GHG emissions and feasibility to implement EU “20–20–20” targets in the Baltic States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1108-1113.
  28. Jaruwan Chontanawat, 2019. "Driving Forces of Energy-Related CO 2 Emissions Based on Expanded IPAT Decomposition Analysis: Evidence from ASEAN and Four Selected Countries," Energies, MDPI, vol. 12(4), pages 1-23, February.
  29. Xianrui Liao & Wei Yang & Yichen Wang & Junnian Song, 2019. "Uncovering Variations, Determinants, and Disparities of Multisector-Level Final Energy Use of Industries Across Cities," Sustainability, MDPI, vol. 11(6), pages 1-16, March.
  30. Huthaifa Alqaralleh, 2021. "On the nexus of CO2 emissions and renewable and nonrenewable energy consumption in Europe: A new insight from panel smooth transition," Energy & Environment, , vol. 32(3), pages 443-457, May.
  31. Tianxiang Li & Tomas Baležentis & Lijuan Cao & Jing Zhu & Irena Kriščiukaitienė & Rasa Melnikienė, 2016. "Are the Changes in China’s Grain Production Sustainable: Extensive and Intensive Development by the LMDI Approach," Sustainability, MDPI, vol. 8(12), pages 1-24, November.
  32. Liobikienė, Genovaitė & Butkus, Mindaugas, 2017. "The European Union possibilities to achieve targets of Europe 2020 and Paris agreement climate policy," Renewable Energy, Elsevier, vol. 106(C), pages 298-309.
  33. Wu, Dong & Geng, Yong & Pan, Hengyu, 2021. "Whether natural gas consumption bring double dividends of economic growth and carbon dioxide emissions reduction in China?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
  34. Zhang, Tao & Liu, Lili & Lv, Xiaodong, 2019. "The change in the material stock of urban infrastructures in China," Structural Change and Economic Dynamics, Elsevier, vol. 51(C), pages 24-34.
  35. Liobikienė, Genovaitė & Miceikienė, Astrida & Brizga, Janis, 2021. "Decomposition analysis of bioresources: Implementing a competitive and sustainable bioeconomy strategy in the Baltic Sea Region," Land Use Policy, Elsevier, vol. 108(C).
  36. Li, Tianxiang & Baležentis, Tomas & Makutėnienė, Daiva & Streimikiene, Dalia & Kriščiukaitienė, Irena, 2016. "Energy-related CO2 emission in European Union agriculture: Driving forces and possibilities for reduction," Applied Energy, Elsevier, vol. 180(C), pages 682-694.
  37. Ore Koren & Laura Mann, 2018. "Nighttime Light, Superlinear Growth, and Economic Inequalities at the Country Level," Papers 1810.12996, arXiv.org.
  38. Liobikienė, Genovaitė & Butkus, Mindaugas & Bernatonienė, Jurga, 2016. "Drivers of greenhouse gas emissions in the Baltic states: decomposition analysis related to the implementation of Europe 2020 strategy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 309-317.
  39. Yalan Zhao & Yaoqiu Kuang & Ningsheng Huang, 2016. "Decomposition Analysis in Decoupling Transport Output from Carbon Emissions in Guangdong Province, China," Energies, MDPI, vol. 9(4), pages 1-23, April.
  40. Hasanov, Fakhri J. & Bulut, Cihan & Suleymanov, Elchin, 2016. "Do population age groups matter in the energy use of the oil-exporting countries?," Economic Modelling, Elsevier, vol. 54(C), pages 82-99.
  41. Yanan Chen & Sheng Lin, 2015. "Decomposition and allocation of energy-related carbon dioxide emission allowance over provinces of China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 76(3), pages 1893-1909, April.
  42. Huang, Yuan & Yu, Qiang & Wang, Ruirui, 2021. "Driving factors and decoupling effect of carbon footprint pressure in China: Based on net primary production," Technological Forecasting and Social Change, Elsevier, vol. 167(C).
  43. Hwang, In Chang, 2013. "Anthropogenic drivers of carbon emissions: scale and counteracting effects," MPRA Paper 52224, University Library of Munich, Germany.
  44. Jia, Hongxiang & Li, Tianjiao & Wang, Anjian & Liu, Guwang & Guo, Xiaoqian, 2021. "Decoupling analysis of economic growth and mineral resources consumption in China from 1992 to 2017: A comparison between tonnage and exergy perspective," Resources Policy, Elsevier, vol. 74(C).
  45. Lu, Qinli & Yang, Hong & Huang, Xianjin & Chuai, Xiaowei & Wu, Changyan, 2015. "Multi-sectoral decomposition in decoupling industrial growth from carbon emissions in the developed Jiangsu Province, China," Energy, Elsevier, vol. 82(C), pages 414-425.
  46. Yebing Fang & Limao Wang & Zhoupeng Ren & Yan Yang & Chufu Mou & Qiushi Qu, 2017. "Spatial Heterogeneity of Energy-Related CO 2 Emission Growth Rates around the World and Their Determinants during 1990–2014," Energies, MDPI, vol. 10(3), pages 1-17, March.
  47. Román-Collado, Rocío & Cansino, José M. & Botia, Camilo, 2018. "How far is Colombia from decoupling? Two-level decomposition analysis of energy consumption changes," Energy, Elsevier, vol. 148(C), pages 687-700.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.