IDEAS home Printed from https://ideas.repec.org/r/eee/enepol/v39y2011i9p5045-5062.html
   My bibliography  Save this item

Simulating the impact of policy, energy prices and technological progress on the passenger car fleet in Austria--A model based analysis 2010-2050

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Krause, Jette & Thiel, Christian & Tsokolis, Dimitrios & Samaras, Zissis & Rota, Christian & Ward, Andy & Prenninger, Peter & Coosemans, Thierry & Neugebauer, Stephan & Verhoeve, Wim, 2020. "EU road vehicle energy consumption and CO2 emissions by 2050 – Expert-based scenarios," Energy Policy, Elsevier, vol. 138(C).
  2. Daly, Hannah E. & Ó Gallachóir, Brian P., 2012. "Future energy and emissions policy scenarios in Ireland for private car transport," Energy Policy, Elsevier, vol. 51(C), pages 172-183.
  3. Travesset-Baro, Oriol & Gallachóir, Brian P.Ó. & Jover, Eric & Rosas-Casals, Marti, 2016. "Transport energy demand in Andorra. Assessing private car futures through sensitivity and scenario analysis," Energy Policy, Elsevier, vol. 96(C), pages 78-92.
  4. Garth Heutel & Erich Muehlegger, 2015. "Consumer Learning and Hybrid Vehicle Adoption," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 62(1), pages 125-161, September.
  5. Shafiei, Ehsan & Davidsdottir, Brynhildur & Leaver, Jonathan & Stefansson, Hlynur & Asgeirsson, Eyjolfur Ingi, 2015. "Comparative analysis of hydrogen, biofuels and electricity transitional pathways to sustainable transport in a renewable-based energy system," Energy, Elsevier, vol. 83(C), pages 614-627.
  6. Lee, Yongseung & Kim, Chongman & Shin, Juneseuk, 2016. "A hybrid electric vehicle market penetration model to identify the best policy mix: A consumer ownership cycle approach," Applied Energy, Elsevier, vol. 184(C), pages 438-449.
  7. Pietzcker, Robert C. & Longden, Thomas & Chen, Wenying & Fu, Sha & Kriegler, Elmar & Kyle, Page & Luderer, Gunnar, 2014. "Long-term transport energy demand and climate policy: Alternative visions on transport decarbonization in energy-economy models," Energy, Elsevier, vol. 64(C), pages 95-108.
  8. Shafiei, Ehsan & Davidsdottir, Brynhildur & Leaver, Jonathan & Stefansson, Hlynur & Asgeirsson, Eyjolfur Ingi, 2014. "Potential impact of transition to a low-carbon transport system in Iceland," Energy Policy, Elsevier, vol. 69(C), pages 127-142.
  9. González Palencia, Juan C. & Araki, Mikiya & Shiga, Seiichi, 2016. "Energy, environmental and economic impact of mini-sized and zero-emission vehicle diffusion on a light-duty vehicle fleet," Applied Energy, Elsevier, vol. 181(C), pages 96-109.
  10. Arne Höltl & Cathy Macharis & Klaas De Brucker, 2017. "Pathways to Decarbonise the European Car Fleet: A Scenario Analysis Using the Backcasting Approach," Energies, MDPI, vol. 11(1), pages 1-20, December.
  11. Xu, Bin & Rathod, Dhruvang & Zhang, Darui & Yebi, Adamu & Zhang, Xueyu & Li, Xiaoya & Filipi, Zoran, 2020. "Parametric study on reinforcement learning optimized energy management strategy for a hybrid electric vehicle," Applied Energy, Elsevier, vol. 259(C).
  12. González Palencia, Juan C. & Otsuka, Yuki & Araki, Mikiya & Shiga, Seiichi, 2017. "Scenario analysis of lightweight and electric-drive vehicle market penetration in the long-term and impact on the light-duty vehicle fleet," Applied Energy, Elsevier, vol. 204(C), pages 1444-1462.
  13. Yan, Shiyu & De Bruin, Kelly & Dennehy, Emer & Curtis, John, 2020. "A freight transport demand, energy and emission model with technological choices," Papers WP669, Economic and Social Research Institute (ESRI).
  14. Eva Valeri & Amanda Stathopoulos & Edoardo Marcucci, 2012. "Energy Efficiency In The Transport Sector: Policy Evolution In Some European Countries," Working Papers 0312, CREI Università degli Studi Roma Tre, revised 2012.
  15. Jiménez, Juan Luis & Perdiguero, Jordi & García, Carmen, 2016. "Evaluation of subsidies programs to sell green cars: Impact on prices, quantities and efficiency," Transport Policy, Elsevier, vol. 47(C), pages 105-118.
  16. Brito, Thiago Luis Felipe & Islam, Towhidul & Stettler, Marc & Mouette, Dominique & Meade, Nigel & Moutinho dos Santos, Edmilson, 2019. "Transitions between technological generations of alternative fuel vehicles in Brazil," Energy Policy, Elsevier, vol. 134(C).
  17. Bishop, Justin D.K. & Martin, Niall P.D. & Boies, Adam M., 2014. "Cost-effectiveness of alternative powertrains for reduced energy use and CO2 emissions in passenger vehicles," Applied Energy, Elsevier, vol. 124(C), pages 44-61.
  18. Mahdi Salehi & Seyed Hamed Fahimifard & Grzegorz Zimon & Andrzej Bujak & Adam Sadowski, 2022. "The Effect of CO 2 Gas Emissions on the Market Value, Price and Shares Returns," Energies, MDPI, vol. 15(23), pages 1-17, December.
  19. Shafiei, Ehsan & Davidsdottir, Brynhildur & Leaver, Jonathan & Stefansson, Hlynur & Asgeirsson, Eyjolfur Ingi & Keith, David R., 2016. "Analysis of supply-push strategies governing the transition to biofuel vehicles in a market-oriented renewable energy system," Energy, Elsevier, vol. 94(C), pages 409-421.
  20. González Palencia, Juan C. & Sakamaki, Tsukasa & Araki, Mikiya & Shiga, Seiichi, 2015. "Impact of powertrain electrification, vehicle size reduction and lightweight materials substitution on energy use, CO2 emissions and cost of a passenger light-duty vehicle fleet," Energy, Elsevier, vol. 93(P2), pages 1489-1504.
  21. Aileen Lam, 2013. "Projections of future emissions and energy use from passenger cars as a result of policies in the EU with a dynamic model of technological change," 4CMR Working Paper Series 005, University of Cambridge, Department of Land Economy, Cambridge Centre for Climate Change Mitigation Research.
  22. Bishop, Justin D.K. & Martin, Niall P.D. & Boies, Adam M., 2016. "Quantifying the role of vehicle size, powertrain technology, activity and consumer behaviour on new UK passenger vehicle fleet energy use and emissions under different policy objectives," Applied Energy, Elsevier, vol. 180(C), pages 196-212.
  23. Alam, Md. Saniul & Hyde, Bernard & Duffy, Paul & McNabola, Aonghus, 2017. "Assessment of pathways to reduce CO2 emissions from passenger car fleets: Case study in Ireland," Applied Energy, Elsevier, vol. 189(C), pages 283-300.
  24. González Palencia, Juan C. & Furubayashi, Takaaki & Nakata, Toshihiko, 2014. "Techno-economic assessment of lightweight and zero emission vehicles deployment in the passenger car fleet of developing countries," Applied Energy, Elsevier, vol. 123(C), pages 129-142.
  25. Fontes, T. & Pereira, S.R., 2014. "Impact assessment of road fleet transitions on emissions: The case study of a medium European size country," Energy Policy, Elsevier, vol. 72(C), pages 175-185.
  26. Homolka, Lubor & Ngo, Vu Minh & Pavelková, Drahomíra & Le, Bach Tuan & Dehning, Bruce, 2020. "Short- and medium-term car registration forecasting based on selected macro and socio-economic indicators in European countries," Research in Transportation Economics, Elsevier, vol. 80(C).
  27. Querini, Florent & Benetto, Enrico, 2014. "Agent-based modelling for assessing hybrid and electric cars deployment policies in Luxembourg and Lorraine," Transportation Research Part A: Policy and Practice, Elsevier, vol. 70(C), pages 149-161.
  28. González Palencia, Juan C. & Furubayashi, Takaaki & Nakata, Toshihiko, 2012. "Energy use and CO2 emissions reduction potential in passenger car fleet using zero emission vehicles and lightweight materials," Energy, Elsevier, vol. 48(1), pages 548-565.
  29. Tesemma, Tewodros, 2023. "Encouraging adoption of fuel-efficient vehicles – A policy reform evaluation from Ethiopia," Working Papers in Economics 838, University of Gothenburg, Department of Economics.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.