IDEAS home Printed from https://ideas.repec.org/r/eee/enepol/v33y2005i5p579-594.html
   My bibliography  Save this item

Natural gas as an alternative to crude oil in automotive fuel chains well-to-wheel analysis and transition strategy development

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Daly, Hannah E. & Ó Gallachóir, Brian P., 2012. "Future energy and emissions policy scenarios in Ireland for private car transport," Energy Policy, Elsevier, vol. 51(C), pages 172-183.
  2. Zhang, Jinrui & Meerman, Hans & Benders, René & Faaij, André, 2022. "Potential role of natural gas infrastructure in China to supply low-carbon gases during 2020–2050," Applied Energy, Elsevier, vol. 306(PA).
  3. Yeh, Sonia, 2007. "An empirical analysis on the adoption of alternative fuel vehicles: The case of natural gas vehicles," Energy Policy, Elsevier, vol. 35(11), pages 5865-5875, November.
  4. Rosha, Pali & Dhir, Amit & Mohapatra, Saroj Kumar, 2018. "Influence of gaseous fuel induction on the various engine characteristics of a dual fuel compression ignition engine: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3333-3349.
  5. Malakoutirad, Mohammad & Bradley, Thomas H. & Hagen, Chris, 2015. "Design considerations for an engine-integral reciprocating natural gas compressor," Applied Energy, Elsevier, vol. 156(C), pages 129-137.
  6. Mansour, Charbel J. & Haddad, Marc G., 2017. "Well-to-wheel assessment for informing transition strategies to low-carbon fuel-vehicles in developing countries dependent on fuel imports: A case-study of road transport in Lebanon," Energy Policy, Elsevier, vol. 107(C), pages 167-181.
  7. Malte Schwoon & Floortje Alkemade & Koen Frenken & Marko P. Hekkert, 2006. "Flexible transition strategies towards future well-to-wheel chains: an evolutionary modelling approach," Working Papers FNU-114, Research unit Sustainability and Global Change, Hamburg University, revised Aug 2006.
  8. Rentizelas, Athanasios A. & Li, Jun, 2016. "Techno-economic and carbon emissions analysis of biomass torrefaction downstream in international bioenergy supply chains for co-firing," Energy, Elsevier, vol. 114(C), pages 129-142.
  9. Nakyai, Teeranun & Patcharavorachot, Yaneeporn & Arpornwichanop, Amornchai & Saebea, Dang, 2020. "Comparative exergoeconomic analysis of indirect and direct bio-dimethyl ether syntheses based on air-steam biomass gasification with CO2 utilization," Energy, Elsevier, vol. 209(C).
  10. Cantillo, Víctor & Amaya, Johanna & Serrano, Iván & Cantillo-García, Víctor & Galván, Janer, 2022. "Influencing factors of trucking companies willingness to shift to alternative fuel vehicles," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 163(C).
  11. Peng, Jiachao & Xiao, Jianzhong & Zhang, Lian & Wang, Teng, 2020. "The impact of China's ‘Atmosphere Ten Articles’ policy on total factor productivity of energy exploitation: Empirical evidence using synthetic control methods," Resources Policy, Elsevier, vol. 65(C).
  12. Boxiao Chen & Erica Klampfl & Margaret Strumolo & Yan Fu & Xiuli Chao & Michael A. Tamor, 2017. "Optimal investment strategies for light duty vehicle and electricity generation sectors in a carbon constrained world," Annals of Operations Research, Springer, vol. 255(1), pages 391-420, August.
  13. van Vliet, Oscar & van den Broek, Machteld & Turkenburg, Wim & Faaij, André, 2011. "Combining hybrid cars and synthetic fuels with electricity generation and carbon capture and storage," Energy Policy, Elsevier, vol. 39(1), pages 248-268, January.
  14. Garg, Amit & Vishwanathan, Saritha & Avashia, Vidhee, 2013. "Life cycle greenhouse gas emission assessment of major petroleum oil products for transport and household sectors in India," Energy Policy, Elsevier, vol. 58(C), pages 38-48.
  15. Liyan Feng & Jun Zhai & Lei Chen & Wuqiang Long & Jiangping Tian & Bin Tang, 2017. "Increasing the application of gas engines to decrease China’s GHG emissions," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 22(6), pages 839-861, August.
  16. Espinoza, Vicente Sebastian & Fontalvo, Javier & Martí-Herrero, Jaime & Miguel, Luis Javier & Mediavilla, Margarita, 2022. "Analysis of energy future pathways for Ecuador facing the prospects of oil availability using a system dynamics model. Is degrowth inevitable?," Energy, Elsevier, vol. 259(C).
  17. Tianbo Wang & Lanchun Zhang & Qian Chen, 2020. "Effect of Valve Opening Manner and Sealing Method on the Steady Injection Characteristic of Gas Fuel Injector," Energies, MDPI, vol. 13(6), pages 1-12, March.
  18. Siahvashi, Arman & Al Ghafri, Saif Z.S. & Yang, Xiaoxian & Rowland, Darren & May, Eric F., 2021. "Avoiding costly LNG plant freeze-out-induced shutdowns: Measurement and modelling for neopentane solubility at LNG conditions," Energy, Elsevier, vol. 217(C).
  19. Larizzatti Zacharias, Luis Guilherme & Antunes Costa de Andrade, Ana Clara & Guichet, Xavier & Mouette, Dominique & Peyerl, Drielli, 2022. "Natural gas as a vehicular fuel in Brazil: Barriers and lessons to learn," Energy Policy, Elsevier, vol. 167(C).
  20. Mallapragada, Dharik S. & Duan, Gang & Agrawal, Rakesh, 2014. "From shale gas to renewable energy based transportation solutions," Energy Policy, Elsevier, vol. 67(C), pages 499-507.
  21. Nikas, A. & Koasidis, K. & Köberle, A.C. & Kourtesi, G. & Doukas, H., 2022. "A comparative study of biodiesel in Brazil and Argentina: An integrated systems of innovation perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
  22. Arteconi, A. & Polonara, F., 2013. "LNG as vehicle fuel and the problem of supply: The Italian case study," Energy Policy, Elsevier, vol. 62(C), pages 503-512.
  23. Gong, Binlei, 2018. "Different behaviors in natural gas production between national and private oil companies: Economics-driven or environment-driven?," Energy Policy, Elsevier, vol. 114(C), pages 145-152.
  24. Szklo, Alexandre & Schaeffer, Roberto, 2006. "Alternative energy sources or integrated alternative energy systems? Oil as a modern lance of Peleus for the energy transition," Energy, Elsevier, vol. 31(14), pages 2513-2522.
  25. Ockwell, David G. & Watson, Jim & MacKerron, Gordon & Pal, Prosanto & Yamin, Farhana, 2008. "Key policy considerations for facilitating low carbon technology transfer to developing countries," Energy Policy, Elsevier, vol. 36(11), pages 4104-4115, November.
  26. Malça, João & Freire, Fausto, 2006. "Renewability and life-cycle energy efficiency of bioethanol and bio-ethyl tertiary butyl ether (bioETBE): Assessing the implications of allocation," Energy, Elsevier, vol. 31(15), pages 3362-3380.
  27. Suurs, Roald A.A. & Hekkert, Marko P. & Kieboom, Sander & Smits, Ruud E.H.M., 2010. "Understanding the formative stage of technological innovation system development: The case of natural gas as an automotive fuel," Energy Policy, Elsevier, vol. 38(1), pages 419-431, January.
  28. Yan, Xiaoyu & Crookes, Roy J., 2009. "Life cycle analysis of energy use and greenhouse gas emissions for road transportation fuels in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2505-2514, December.
  29. Mehra, Roopesh Kumar & Duan, Hao & Juknelevičius, Romualdas & Ma, Fanhua & Li, Junyin, 2017. "Progress in hydrogen enriched compressed natural gas (HCNG) internal combustion engines - A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 1458-1498.
  30. Roald A.A. Suurs & Marko P. Hekkert & Sander Kieboom & Ruud E.H.M. Smits, 2009. "Understanding the formative stage of Technological Innovation System development. The case of natural gas as an automotive fuel," Innovation Studies Utrecht (ISU) working paper series 09-09, Utrecht University, Department of Innovation Studies, revised Jun 2009.
  31. Wesseling, Joeri H. & van der Vooren , Alexander, 2016. "Lock-in of mature innovation systems, The transformation toward clean concrete in the Netherlands," Papers in Innovation Studies 2016/17, Lund University, CIRCLE - Centre for Innovation Research.
  32. Malça, João & Freire, Fausto, 2011. "Life-cycle studies of biodiesel in Europe: A review addressing the variability of results and modeling issues," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 338-351, January.
  33. Feiqi Liu & Fuquan Zhao & Zongwei Liu & Han Hao, 2018. "China’s Electric Vehicle Deployment: Energy and Greenhouse Gas Emission Impacts," Energies, MDPI, vol. 11(12), pages 1-19, November.
  34. Goedecke, Martin & Therdthianwong, Supaporn & Gheewala, Shabbir H., 2007. "Life cycle cost analysis of alternative vehicles and fuels in Thailand," Energy Policy, Elsevier, vol. 35(6), pages 3236-3246, June.
  35. Małgorzata Mrozik & Agnieszka Merkisz-Guranowska, 2020. "Environmental Assessment of the Vehicle Operation Process," Energies, MDPI, vol. 14(1), pages 1-15, December.
  36. Raslavičius, Laurencas & Keršys, Artūras & Mockus, Saulius & Keršienė, Neringa & Starevičius, Martynas, 2014. "Liquefied petroleum gas (LPG) as a medium-term option in the transition to sustainable fuels and transport," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 513-525.
  37. Sjardin, M. & Damen, K.J. & Faaij, A.P.C., 2006. "Techno-economic prospects of small-scale membrane reactors in a future hydrogen-fuelled transportation sector," Energy, Elsevier, vol. 31(14), pages 2523-2555.
  38. Waller, Michael G. & Williams, Eric D. & Matteson, Schuyler W. & Trabold, Thomas A., 2014. "Current and theoretical maximum well-to-wheels exergy efficiency of options to power vehicles with natural gas," Applied Energy, Elsevier, vol. 127(C), pages 55-63.
  39. Zhang, Jinrui & Meerman, Hans & Benders, René & Faaij, André, 2021. "Techno-economic and life cycle greenhouse gas emissions assessment of liquefied natural gas supply chain in China," Energy, Elsevier, vol. 224(C).
  40. Kay Damen & André Faaij, 2006. "A Greenhouse Gas Balance of two Existing International Biomass Import Chains," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 11(5), pages 1023-1050, September.
  41. Sehatpour, Mohammad-Hadi & Kazemi, Aliyeh & Sehatpour, Hesam-eddin, 2017. "Evaluation of alternative fuels for light-duty vehicles in Iran using a multi-criteria approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 295-310.
  42. Li, Xin & Ou, Xunmin & Zhang, Xu & Zhang, Qian & Zhang, Xiliang, 2013. "Life-cycle fossil energy consumption and greenhouse gas emission intensity of dominant secondary energy pathways of China in 2010," Energy, Elsevier, vol. 50(C), pages 15-23.
  43. Thamsiriroj, T. & Smyth, H. & Murphy, J.D., 2011. "A roadmap for the introduction of gaseous transport fuel: A case study for renewable natural gas in Ireland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4642-4651.
  44. Ou, Xunmin & Zhang, Xiliang & Chang, Shiyan, 2010. "Alternative fuel buses currently in use in China: Life-cycle fossil energy use, GHG emissions and policy recommendations," Energy Policy, Elsevier, vol. 38(1), pages 406-418, January.
  45. Vivian Mac Knight & Carlos Eduardo Frickmann Young, 2006. "Custo Da Poluição Gerada Pelos Ônibus Urbanos Na Rmsp," Anais do XXXIV Encontro Nacional de Economia [Proceedings of the 34th Brazilian Economics Meeting] 69, ANPEC - Associação Nacional dos Centros de Pós-Graduação em Economia [Brazilian Association of Graduate Programs in Economics].
  46. Torchio, Marco F. & Santarelli, Massimo G., 2010. "Energy, environmental and economic comparison of different powertrain/fuel options using well-to-wheels assessment, energy and external costs – European market analysis," Energy, Elsevier, vol. 35(10), pages 4156-4171.
  47. Anam Nadeem & Mosè Rossi & Erica Corradi & Lingkang Jin & Gabriele Comodi & Nadeem Ahmed Sheikh, 2022. "Energy-Environmental Planning of Electric Vehicles (EVs): A Case Study of the National Energy System of Pakistan," Energies, MDPI, vol. 15(9), pages 1-19, April.
  48. Lin Gao & Zach C. Winfield, 2012. "Life Cycle Assessment of Environmental and Economic Impacts of Advanced Vehicles," Energies, MDPI, vol. 5(3), pages 1-16, March.
  49. Hao, Han & Wang, Hewu & Song, Lingjun & Li, Xihao & Ouyang, Minggao, 2010. "Energy consumption and GHG emissions of GTL fuel by LCA: Results from eight demonstration transit buses in Beijing," Applied Energy, Elsevier, vol. 87(10), pages 3212-3217, October.
  50. Arteconi, A. & Brandoni, C. & Evangelista, D. & Polonara, F., 2010. "Life-cycle greenhouse gas analysis of LNG as a heavy vehicle fuel in Europe," Applied Energy, Elsevier, vol. 87(6), pages 2005-2013, June.
  51. Rocco, Matteo V. & Casalegno, Andrea & Colombo, Emanuela, 2018. "Modelling road transport technologies in future scenarios: Theoretical comparison and application of Well-to-Wheels and Input-Output analyses," Applied Energy, Elsevier, vol. 232(C), pages 583-597.
  52. Kumar, Satish & Kwon, Hyouk-Tae & Choi, Kwang-Ho & Lim, Wonsub & Cho, Jae Hyun & Tak, Kyungjae & Moon, Il, 2011. "LNG: An eco-friendly cryogenic fuel for sustainable development," Applied Energy, Elsevier, vol. 88(12), pages 4264-4273.
  53. Song, Hongqing & Ou, Xunmin & Yuan, Jiehui & Yu, Mingxu & Wang, Cheng, 2017. "Energy consumption and greenhouse gas emissions of diesel/LNG heavy-duty vehicle fleets in China based on a bottom-up model analysis," Energy, Elsevier, vol. 140(P1), pages 966-978.
  54. Hao, Han & Liu, Zongwei & Zhao, Fuquan & Li, Weiqi, 2016. "Natural gas as vehicle fuel in China: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 521-533.
  55. Becerra-Lopez, Humberto R. & Golding, Peter, 2007. "Dynamic exergy analysis for capacity expansion of regional power-generation systems: Case study of far West Texas," Energy, Elsevier, vol. 32(11), pages 2167-2186.
  56. Brathwaite, J. & Horst, S. & Iacobucci, J., 2010. "Maximizing efficiency in the transition to a coal-based economy," Energy Policy, Elsevier, vol. 38(10), pages 6084-6091, October.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.