IDEAS home Printed from https://ideas.repec.org/r/eee/ecmode/v23y2006i4p662-668.html
   My bibliography  Save this item

Why use Markov-switching models in exchange rate prediction?

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Andrew Filardo & Mr. Gaston Gelos & Thomas McGregor, 2022. "Exchange-Rate Swings and Foreign Currency Intervention," IMF Working Papers 2022/158, International Monetary Fund.
  2. Chen, Lemeng & Lazrak, Skander & Wang, Yan & Welch, Robert, 2019. "Pure momentum is priced," Journal of Behavioral and Experimental Finance, Elsevier, vol. 22(C), pages 75-89.
  3. Suman Das & Saikat Sinha Roy, 2021. "Predicting regime switching in BRICS currency volatility: a Markov switching autoregressive approach," DECISION: Official Journal of the Indian Institute of Management Calcutta, Springer;Indian Institute of Management Calcutta, vol. 48(2), pages 165-180, June.
  4. Constandina Koki & Stefanos Leonardos & Georgios Piliouras, 2020. "Do Cryptocurrency Prices Camouflage Latent Economic Effects? A Bayesian Hidden Markov Approach," Future Internet, MDPI, vol. 12(3), pages 1-19, March.
  5. Oscar Claveria & Enric Monte & Petar Soric & Salvador Torra, 2022. "“An application of deep learning for exchange rate forecasting”," AQR Working Papers 202201, University of Barcelona, Regional Quantitative Analysis Group, revised Jan 2022.
  6. Anastasios G. Malliaris & Ramaprasad Bhar, 2011. "Dividends, Momentum, and Macroeconomic Variables as Determinants of the US Equity Premium Across Economic Regimes," Review of Behavioral Finance, Emerald Group Publishing Limited, vol. 3(1), pages 27-53, April.
  7. Alam, Md Rafayet & Forhad, Md. Abdur Rahman & Sah, Nilesh B., 2022. "Consumption- and speculation-led change in demand for oil and the response of base metals: A Markov-switching approach," Finance Research Letters, Elsevier, vol. 47(PB).
  8. Youssef, Manel & Mokni, Khaled, 2021. "Oil-gold nexus: Evidence from regime switching-quantile regression approach," Resources Policy, Elsevier, vol. 73(C).
  9. Nikolsko-Rzhevskyy, Alex & Prodan, Ruxandra, 2012. "Markov switching and exchange rate predictability," International Journal of Forecasting, Elsevier, vol. 28(2), pages 353-365.
  10. T. G. Saji, 2019. "Can BRICS Form a Currency Union? An Analysis under Markov Regime-Switching Framework," Global Business Review, International Management Institute, vol. 20(1), pages 151-165, February.
  11. Abdul-Rashid Abdul-Rahaman & Coleman Martha & Emmanuel Caesar Ayamba, 2024. "Exchange Rate Models and the Management of Forex Losses in Ghana: Modelling Exchange Rate Volatilities for Businesses," Management and Labour Studies, XLRI Jamshedpur, School of Business Management & Human Resources, vol. 49(4), pages 679-703, November.
  12. Khyati Kathuria & Nand Kumar, 2022. "Pandemic‐induced fear and government policy response as a measure of uncertainty in the foreign exchange market: Evidence from (a)symmetric wild bootstrap likelihood ratio test," Pacific Economic Review, Wiley Blackwell, vol. 27(4), pages 361-379, October.
  13. Idowu Oluwasayo Ayodeji, 2017. "Oil and the Naira: A Markov Switching Perspective," African Development Review, African Development Bank, vol. 29(4), pages 562-574, December.
  14. Tanattrin Bunnag, 2015. "Hedging Petroleum Futures with Multivariate GARCH Models," International Journal of Energy Economics and Policy, Econjournals, vol. 5(1), pages 105-120.
  15. Shahbaz, Muhammad & Khan, Asad ul Islam & Mubarak, Muhammad Shujaat, 2023. "Roling-window bounds testing approach to analyze the relationship between oil prices and metal prices," The Quarterly Review of Economics and Finance, Elsevier, vol. 87(C), pages 388-395.
  16. Mendy, David & Widodo, Tri, 2018. "Two Stage Markov Switching Model: Identifying the Indonesian Rupiah Per US Dollar Turning Points Post 1997 Financial Crisis," MPRA Paper 86728, University Library of Munich, Germany.
  17. Mohamed Osman, 2015. "Dynamic Asymmetries in the Electric Consumption of the GCC Countries," International Journal of Energy Economics and Policy, Econjournals, vol. 5(2), pages 461-467.
  18. Chadwick, Meltem Gülenay & Fazilet, Fatih & Tekatli, Necati, 2015. "Understanding the common dynamics of the emerging market currencies," Economic Modelling, Elsevier, vol. 49(C), pages 120-136.
  19. Koki, Constandina & Leonardos, Stefanos & Piliouras, Georgios, 2022. "Exploring the predictability of cryptocurrencies via Bayesian hidden Markov models," Research in International Business and Finance, Elsevier, vol. 59(C).
  20. Carl-Henrik Dahlqvist, 2018. "Cross-country information transmissions and the role of commodity markets: A multichannel Markov switching approach," PLOS ONE, Public Library of Science, vol. 13(8), pages 1-22, August.
  21. Slim Chaouachi & Zied Ftiti & Frederic Teulon, 2014. "Explaining the Tunisian Real Exchange: Long Memory versus Structural Breaks," Working Papers 2014-147, Department of Research, Ipag Business School.
  22. Zied Ftiti & Slim Chaouachi, 2018. "What Can We Learn About the Real Exchange Rate Behavior in the Case of a Peripheral Country?," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 16(3), pages 681-707, September.
  23. Abdorasoul Sadeghi & Hussein Marzban & Ali Hussein Samadi & Karim Azarbaiejani & Parviz Rostamzadeh, 2022. "Financial intermediaries and speculation in the foreign exchange market: the role of monetary policy in Iran’s economy," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 11(1), pages 1-26, December.
  24. repec:ipg:wpaper:2014-390 is not listed on IDEAS
  25. Abderrazak Ben Maatoug & Rim Lamouchi & Russell Davidson & Ibrahim Fatnassi, 2018. "Modelling Foreign Exchange Realized Volatility Using High Frequency Data: Long Memory versus Structural Breaks," Central European Journal of Economic Modelling and Econometrics, Central European Journal of Economic Modelling and Econometrics, vol. 10(1), pages 1-25, March.
  26. Liu, Wei-han, 2018. "Hidden Markov model analysis of extreme behaviors of foreign exchange rates," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 1007-1019.
  27. Tamgac, Unay, 2011. "Crisis and self-fulfilling expectations: The Turkish experience in 1994 and 2000-2001," International Review of Economics & Finance, Elsevier, vol. 20(1), pages 44-58, January.
  28. Afanasyev, Dmitriy O. & Fedorova, Elena & Ledyaeva, Svetlana, 2021. "Strength of words: Donald Trump's tweets, sanctions and Russia's ruble," Journal of Economic Behavior & Organization, Elsevier, vol. 184(C), pages 253-277.
  29. Lee, Hsiu-Yun, 2011. "Nonlinear exchange rate dynamics under stochastic official intervention," Economic Modelling, Elsevier, vol. 28(4), pages 1510-1518, July.
  30. Firat Melih Yilmaz & Ozer Arabaci, 2021. "Should Deep Learning Models be in High Demand, or Should They Simply be a Very Hot Topic? A Comprehensive Study for Exchange Rate Forecasting," Computational Economics, Springer;Society for Computational Economics, vol. 57(1), pages 217-245, January.
  31. Konstantinos N. Konstantakis & Ioannis G. Melissaropoulos & Theodoros Daglis & Panayotis G. Michaelides, 2023. "The euro to dollar exchange rate in the Covid‐19 era: Evidence from spectral causality and Markov‐switching estimation," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 28(2), pages 2037-2055, April.
  32. Lu, Changxiang & Ye, Yong & Fang, Yongjun & Fang, Jiaqi, 2023. "An optimal control theory approach for freight structure path evolution post-COVID-19 pandemic," Socio-Economic Planning Sciences, Elsevier, vol. 85(C).
  33. Syllignakis, Manolis N. & Kouretas, Georgios P., 2011. "Markov-switching regimes and the monetary model of exchange rate determination: Evidence from the Central and Eastern European markets," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 21(5), pages 707-723.
  34. Bhar, Ramaprasad & Hammoudeh, Shawkat, 2011. "Commodities and financial variables: Analyzing relationships in a changing regime environment," International Review of Economics & Finance, Elsevier, vol. 20(4), pages 469-484, October.
  35. Constandina Koki & Stefanos Leonardos & Georgios Piliouras, 2019. "A Peek into the Unobservable: Hidden States and Bayesian Inference for the Bitcoin and Ether Price Series," Papers 1909.10957, arXiv.org, revised Jul 2021.
  36. Seddha-udom, Thanaporn, 2014. "Daily Exchange Rate Determination: Short-Term Speculation And Longerterm Expectation," Review of Applied Economics, Lincoln University, Department of Financial and Business Systems, vol. 10(01-2), January.
  37. Constandina Koki & Stefanos Leonardos & Georgios Piliouras, 2020. "Exploring the Predictability of Cryptocurrencies via Bayesian Hidden Markov Models," Papers 2011.03741, arXiv.org, revised Dec 2020.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.