IDEAS home Printed from https://ideas.repec.org/r/eee/appene/v78y2004i1p1-18.html
   My bibliography  Save this item

Calculating the marginal costs of a district-heating utility

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Zhi Zhu & Miaomiao Wang & Zuoxia Xing & Yang Liu & Shihong Chen, 2023. "Optimal Configuration of Power/Thermal Energy Storage for a Park-Integrated Energy System Considering Flexible Load," Energies, MDPI, vol. 16(18), pages 1-17, September.
  2. Holmberg, Henrik & Tuomaala, Mari & Haikonen, Turo & Ahtila, Pekka, 2012. "Allocation of fuel costs and CO2-emissions to heat and power in an industrial CHP plant: Case integrated pulp and paper mill," Applied Energy, Elsevier, vol. 93(C), pages 614-623.
  3. Gonzalez-Salazar, Miguel & Klossek, Julia & Dubucq, Pascal & Punde, Thomas, 2023. "Portfolio optimization in district heating: Merit order or mixed integer linear programming?," Energy, Elsevier, vol. 265(C).
  4. Mezősi, András & Beöthy, Ákos & Kácsor, Enikő & Törőcsik, Ágnes, 2016. "A magyarországi távhő-szabályozás modellezése. A megújuló energiára alapozott hőtermelés [Modelling policy options in the district heating sector, with a focus on renewable consumption]," Közgazdasági Szemle (Economic Review - monthly of the Hungarian Academy of Sciences), Közgazdasági Szemle Alapítvány (Economic Review Foundation), vol. 0(11), pages 1149-1176.
  5. Moser, Simon & Puschnigg, Stefan & Rodin, Valerie, 2020. "Designing the Heat Merit Order to determine the value of industrial waste heat for district heating systems," Energy, Elsevier, vol. 200(C).
  6. Schmidt, Johannes & Leduc, Sylvain & Dotzauer, Erik & Kindermann, Georg & Schmid, Erwin, 2009. "Using Monte Carlo Simulation to Account for Uncertainties in the Spatial Explicit Modeling of Biomass Fired Combined Heat and Power Potentials in Austria," Discussion Papers DP-43-2009, University of Natural Resources and Life Sciences, Vienna, Department of Economics and Social Sciences, Institute for Sustainable Economic Development.
  7. Sandberg, Eli & Sneum, Daniel Møller & Trømborg, Erik, 2018. "Framework conditions for Nordic district heating - Similarities and differences, and why Norway sticks out," Energy, Elsevier, vol. 149(C), pages 105-119.
  8. Köfinger, M. & Schmidt, R.R. & Basciotti, D. & Terreros, O. & Baldvinsson, I. & Mayrhofer, J. & Moser, S. & Tichler, R. & Pauli, H., 2018. "Simulation based evaluation of large scale waste heat utilization in urban district heating networks: Optimized integration and operation of a seasonal storage," Energy, Elsevier, vol. 159(C), pages 1161-1174.
  9. Difs, Kristina, 2010. "National energy policies: Obstructing the reduction of global CO2 emissions? An analysis of Swedish energy policies for the district heating sector," Energy Policy, Elsevier, vol. 38(12), pages 7775-7782, December.
  10. Wang, Dan & Hu, Qing'e & Jia, Hongjie & Hou, Kai & Du, Wei & Chen, Ning & Wang, Xudong & Fan, Menghua, 2019. "Integrated demand response in district electricity-heating network considering double auction retail energy market based on demand-side energy stations," Applied Energy, Elsevier, vol. 248(C), pages 656-678.
  11. repec:zbw:inwedp:432009 is not listed on IDEAS
  12. Trygg, Louise & Gebremedhin, Alemayehu & Karlsson, Björn G., 2006. "Resource-effective systems achieved through changes in energy supply and industrial use: The Volvo-Skövde case," Applied Energy, Elsevier, vol. 83(8), pages 801-818, August.
  13. Pina, Eduardo A. & Lozano, Miguel A. & Serra, Luis M., 2017. "Optimal operation and marginal costs in simple trigeneration systems including thermal energy storage," Energy, Elsevier, vol. 135(C), pages 788-798.
  14. Bonev, Petyo & Glachant, Matthieu & Söderberg, Magnus, 2022. "Implicit yardstick competition between heating monopolies in urban areas: Theory and evidence from Sweden," Energy Economics, Elsevier, vol. 109(C).
  15. Taillon, J. & Blanchard, R.E., 2015. "Exergy efficiency graphs for thermal power plants," Energy, Elsevier, vol. 88(C), pages 57-66.
  16. Lygnerud, Kristina & Ottosson, Jonas & Kensby, Johan & Johansson, Linnea, 2021. "Business models combining heat pumps and district heating in buildings generate cost and emission savings," Energy, Elsevier, vol. 234(C).
  17. Zhang, Junli & Ge, Bin & Xu, Hongsheng, 2013. "An equivalent marginal cost-pricing model for the district heating market," Energy Policy, Elsevier, vol. 63(C), pages 1224-1232.
  18. Holmgren, Kristina, 2006. "Role of a district-heating network as a user of waste-heat supply from various sources - the case of Göteborg," Applied Energy, Elsevier, vol. 83(12), pages 1351-1367, December.
  19. Park, Sun-Young & Lee, Kyoung-Sil & Yoo, Seung-Hoon, 2016. "Economies of scale in the Korean district heating system: A variable cost function approach," Energy Policy, Elsevier, vol. 88(C), pages 197-203.
  20. Pérez-Uresti, Salvador I. & Martín, Mariano & Jiménez-Gutiérrez, Arturo, 2019. "Estimation of renewable-based steam costs," Applied Energy, Elsevier, vol. 250(C), pages 1120-1131.
  21. Li, Haoran & Hou, Juan & Hong, Tianzhen & Ding, Yuemin & Nord, Natasa, 2021. "Energy, economic, and environmental analysis of integration of thermal energy storage into district heating systems using waste heat from data centres," Energy, Elsevier, vol. 219(C).
  22. Amiri, Shahnaz & Trygg, Louise & Moshfegh, Bahram, 2009. "Assessment of the natural gas potential for heat and power generation in the County of Östergötland in Sweden," Energy Policy, Elsevier, vol. 37(2), pages 496-506, February.
  23. Bonev, Petyo & Matthieu Glachant & Magnus Söderberg, 2020. "Implicit Yardstick Competition," Economics Working Paper Series 2009, University of St. Gallen, School of Economics and Political Science.
  24. Trygg, Louise & Amiri, Shahnaz, 2007. "European perspective on absorption cooling in a combined heat and power system - A case study of energy utility and industries in Sweden," Applied Energy, Elsevier, vol. 84(12), pages 1319-1337, December.
  25. Björkqvist, Olof & Idefeldt, Jim & Larsson, Aron, 2010. "Risk assessment of new pricing strategies in the district heating market: A case study at Sundsvall Energi AB," Energy Policy, Elsevier, vol. 38(5), pages 2171-2178, May.
  26. András Mezősi & Enikő Kácsor & à kos Beöthy & à gnes Törőcsik & László Szabó, 2017. "Modelling support policies and renewable energy sources deployment in the Hungarian district heating sector," Energy & Environment, , vol. 28(1-2), pages 70-87, March.
  27. Wetterlund, Elisabeth & Söderström, Mats, 2010. "Biomass gasification in district heating systems - The effect of economic energy policies," Applied Energy, Elsevier, vol. 87(9), pages 2914-2922, September.
  28. Fahlén, E. & Ahlgren, E.O., 2009. "Assessment of integration of different biomass gasification alternatives in a district-heating system," Energy, Elsevier, vol. 34(12), pages 2184-2195.
  29. Pantaleo, Antonio & Candelise, Chiara & Bauen, Ausilio & Shah, Nilay, 2014. "ESCO business models for biomass heating and CHP: Profitability of ESCO operations in Italy and key factors assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 237-253.
  30. Benalcazar, Pablo, 2021. "Optimal sizing of thermal energy storage systems for CHP plants considering specific investment costs: A case study," Energy, Elsevier, vol. 234(C).
  31. Liu, Wen & Klip, Diederik & Zappa, William & Jelles, Sytse & Kramer, Gert Jan & van den Broek, Machteld, 2019. "The marginal-cost pricing for a competitive wholesale district heating market: A case study in the Netherlands," Energy, Elsevier, vol. 189(C).
  32. Li, Hailong & Sun, Qie & Zhang, Qi & Wallin, Fredrik, 2015. "A review of the pricing mechanisms for district heating systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 56-65.
  33. Bonev, Petyo & Glachant, Matthieu & Söderberg, Magnus, 2018. "A Mechanism for Institutionalised Threat of Regulation: Evidence from the Swedish District Heating Market," Economics Working Paper Series 1805, University of St. Gallen, School of Economics and Political Science.
  34. Johannes Schmidt & Sylvain Leduc & Erik Dotzauer & Georg Kindermann & Erwin Schmid, 2009. "Using Monte Carlo Simulation to Account for Uncertainties in the Spatial Explicit Modeling of Biomass Fired Combined Heat and Power Potentials in Austria," Working Papers 432009, University of Natural Resources and Life Sciences, Vienna, Department of Economics and Social Sciences, Institute for Sustainable Economic Development.
  35. Holmgren, Kristina & Amiri, Shahnaz, 2007. "Internalising external costs of electricity and heat production in a municipal energy system," Energy Policy, Elsevier, vol. 35(10), pages 5242-5253, October.
  36. Henning, Dag & Amiri, Shahnaz & Holmgren, Kristina, 2006. "Modelling and optimisation of electricity, steam and district heating production for a local Swedish utility," European Journal of Operational Research, Elsevier, vol. 175(2), pages 1224-1247, December.
  37. Amiri, S. & Moshfegh, B., 2010. "Possibilities and consequences of deregulation of the European electricity market for connection of heat sparse areas to district heating systems," Applied Energy, Elsevier, vol. 87(7), pages 2401-2410, July.
  38. Difs, Kristina & Trygg, Louise, 2009. "Pricing district heating by marginal cost," Energy Policy, Elsevier, vol. 37(2), pages 606-616, February.
  39. Vlatko Milić & Shahnaz Amiri & Bahram Moshfegh, 2020. "A Systematic Approach to Predict the Economic and Environmental Effects of the Cost-Optimal Energy Renovation of a Historic Building District on the District Heating System," Energies, MDPI, vol. 13(1), pages 1-25, January.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.