IDEAS home Printed from https://ideas.repec.org/r/cpr/ceprdp/11261.html
   My bibliography  Save this item

Priors for the Long Run

Citations

RePEc Biblio mentions

As found on the RePEc Biblio, the curated bibliography for Economics:
  1. > Econometrics > Time Series Models > VAR Models > Bayesian Vector autoregressions (BVARs)

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Domenico Giannone & Michele Lenza & Lucrezia Reichlin, 2019. "Money, Credit, Monetary Policy, and the Business Cycle in the Euro Area: What Has Changed Since the Crisis?," International Journal of Central Banking, International Journal of Central Banking, vol. 15(5), pages 137-173, December.
  2. Caruso, Alberto & Reichlin, Lucrezia & Ricco, Giovanni, 2019. "Financial and fiscal interaction in the Euro Area crisis: This time was different," European Economic Review, Elsevier, vol. 119(C), pages 333-355.
  3. Tallman, Ellis W. & Zaman, Saeed, 2020. "Combining survey long-run forecasts and nowcasts with BVAR forecasts using relative entropy," International Journal of Forecasting, Elsevier, vol. 36(2), pages 373-398.
  4. Bauwens, Luc & Chevillon, Guillaume & Laurent, Sébastien, 2023. "We modeled long memory with just one lag!," Journal of Econometrics, Elsevier, vol. 236(1).
  5. Budrys, Žymantas & Porqueddu, Mario & Sokol, Andrej, 2022. "Striking a bargain: narrative identification of wage bargaining shocks," Research Bulletin, European Central Bank, vol. 98.
  6. Jarociński, Marek & Marcet, Albert, 2019. "Priors about observables in vector autoregressions," Journal of Econometrics, Elsevier, vol. 209(2), pages 238-255.
  7. Nooman Rebei & Rashid Sbia, 2021. "Transitory and permanent shocks in the global market for crude oil," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 36(7), pages 1047-1064, November.
  8. Davide Delle Monache & Ivan Petrella & Fabrizio Venditti, 2021. "Price Dividend Ratio and Long-Run Stock Returns: A Score-Driven State Space Model," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 39(4), pages 1054-1065, October.
  9. Ganics, Gergely & Odendahl, Florens, 2021. "Bayesian VAR forecasts, survey information, and structural change in the euro area," International Journal of Forecasting, Elsevier, vol. 37(2), pages 971-999.
  10. Richard K. Crump & Stefano Eusepi & Domenico Giannone & Eric Qian & Argia M. Sbordone, 2021. "A Large Bayesian VAR of the United States Economy," Staff Reports 976, Federal Reserve Bank of New York.
  11. Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2016. "Large Vector Autoregressions with Stochastic Volatility and Flexible Priors," Working Papers (Old Series) 1617, Federal Reserve Bank of Cleveland.
  12. Warne, Anders, 2023. "DSGE model forecasting: rational expectations vs. adaptive learning," Working Paper Series 2768, European Central Bank.
  13. Boeckx, Jef & Iania, Leonardo & Wauters, Joris, 2023. "Macroeconomic drivers of Inflation Expectations and Inflation Risk Premia," LIDAM Discussion Papers LFIN 2023003, Université catholique de Louvain, Louvain Finance (LFIN).
  14. Lusompa, Amaze, 2019. "Local Projections, Autocorrelation, and Efficiency," MPRA Paper 99856, University Library of Munich, Germany, revised 11 Apr 2020.
  15. Drago Bergholt & Francesco Furlanetto & Nicolò Maffei-Faccioli, 2022. "The Decline of the Labor Share: New Empirical Evidence," American Economic Journal: Macroeconomics, American Economic Association, vol. 14(3), pages 163-198, July.
  16. Francesco Bianchi & Giovanni Nicolo & Dongho Song, 2023. "Inflation and Real Activity over the Business Cycle," Finance and Economics Discussion Series 2023-038, Board of Governors of the Federal Reserve System (U.S.).
  17. George Kapetanios & Massimiliano Marcellino & Fabrizio Venditti, 2019. "Large time‐varying parameter VARs: A nonparametric approach," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 34(7), pages 1027-1049, November.
  18. Cimadomo, Jacopo & Giannone, Domenico & Lenza, Michele & Monti, Francesca & Sokol, Andrej, 2022. "Nowcasting with large Bayesian vector autoregressions," Journal of Econometrics, Elsevier, vol. 231(2), pages 500-519.
  19. Florian Huber & Gary Koop, 2023. "Subspace shrinkage in conjugate Bayesian vector autoregressions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 38(4), pages 556-576, June.
  20. Ning Zhang & Haisheng Li, 2024. "Bayesian Vector Autoregression Analysis of Chinese Coal-Fired Thermal Power Plants," Sustainability, MDPI, vol. 16(19), pages 1-16, September.
  21. Dimitrios P. Louzis, 2019. "Steady‐state modeling and macroeconomic forecasting quality," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 34(2), pages 285-314, March.
  22. Loria, Francesca & Matthes, Christian & Wang, Mu-Chun, 2022. "Economic theories and macroeconomic reality," Journal of Monetary Economics, Elsevier, vol. 126(C), pages 105-117.
  23. Carriero, Andrea & Clark, Todd E. & Marcellino, Massimiliano, 2019. "Large Bayesian vector autoregressions with stochastic volatility and non-conjugate priors," Journal of Econometrics, Elsevier, vol. 212(1), pages 137-154.
  24. Paci, Lucia & Consonni, Guido, 2020. "Structural learning of contemporaneous dependencies in graphical VAR models," Computational Statistics & Data Analysis, Elsevier, vol. 144(C).
  25. Andrle, Michal & Plašil, Miroslav, 2018. "Econometrics with system priors," Economics Letters, Elsevier, vol. 172(C), pages 134-137.
  26. Angelini, Elena & Lalik, Magdalena & Lenza, Michele & Paredes, Joan, 2019. "Mind the gap: A multi-country BVAR benchmark for the Eurosystem projections," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1658-1668.
  27. repec:hal:spmain:info:hdl:2441/4u5amfvji89k4pj64fk8bf01dm is not listed on IDEAS
  28. Kurt Graden Lunsford & Kenneth D. West, 2024. "An Empirical Evaluation of Some Long-Horizon Macroeconomic Forecasts," Working Papers 24-20, Federal Reserve Bank of Cleveland.
  29. repec:spo:wpmain:info:hdl:2441/oqlq05oa890qa4mag2svqh4ht is not listed on IDEAS
  30. Bjarni G. Einarsson, 2024. "Online Monitoring of Policy Optimality," Economics wp95, Department of Economics, Central bank of Iceland.
  31. Felix Kapfhammer & Vegard H. Larsen & Leif Anders Thorsrud, 2020. "Climate risk and commodity currencies," Working Paper 2020/18, Norges Bank.
  32. Ciobotaru, Corina & Mazza, Christian, 2022. "Consistency and asymptotic normality of M-estimates of scatter on Grassmann manifolds," Journal of Multivariate Analysis, Elsevier, vol. 190(C).
  33. Korobilis, Dimitris, 2016. "Prior selection for panel vector autoregressions," Computational Statistics & Data Analysis, Elsevier, vol. 101(C), pages 110-120.
  34. repec:hal:spmain:info:hdl:2441/oqlq05oa890qa4mag2svqh4ht is not listed on IDEAS
  35. repec:wrk:wrkemf:29 is not listed on IDEAS
  36. Peter McAdam & Anders Warne, 2024. "Density forecast combinations: The real‐time dimension," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(5), pages 1153-1172, August.
  37. Marcela De Castro-Valderrama & Santiago Forero-Alvarado & Nicolas Moreno-Arias & Sara Naranjo-Saldarriaga, 2022. "Unravelling the Narratives Behind Macroeconomic Forecasts," IHEID Working Papers 18-2022, Economics Section, The Graduate Institute of International Studies.
  38. Wang,Dieter & Andree,Bo Pieter Johannes & Chamorro Elizondo,Andres Fernando & Spencer,Phoebe Girouard, 2020. "Stochastic Modeling of Food Insecurity," Policy Research Working Paper Series 9413, The World Bank.
  39. Ho, Paul, 2023. "Global robust Bayesian analysis in large models," Journal of Econometrics, Elsevier, vol. 235(2), pages 608-642.
  40. Niko Hauzenberger & Michael Pfarrhofer & Luca Rossini, 2020. "Sparse time-varying parameter VECMs with an application to modeling electricity prices," Papers 2011.04577, arXiv.org, revised Apr 2023.
  41. Michele Lenza & Giorgio E. Primiceri, 2022. "How to estimate a vector autoregression after March 2020," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(4), pages 688-699, June.
  42. Philippe Goulet Coulombe & Maximilian Gobel, 2020. "Arctic Amplification of Anthropogenic Forcing: A Vector Autoregressive Analysis," Papers 2005.02535, arXiv.org, revised Mar 2021.
  43. Marta Baltar Moreira Areosa & Wagner Piazza Gaglianone, 2023. "Anchoring Long-term VAR Forecasts Based On Survey Data and State-space Models," Working Papers Series 574, Central Bank of Brazil, Research Department.
  44. Lenard Lieb & Stephan Smeekes, 2017. "Inference for Impulse Responses under Model Uncertainty," Papers 1709.09583, arXiv.org, revised Oct 2019.
  45. Wang, Dieter & Andrée, Bo Pieter Johannes & Chamorro, Andres Fernando & Spencer, Phoebe Girouard, 2022. "Transitions into and out of food insecurity: A probabilistic approach with panel data evidence from 15 countries," World Development, Elsevier, vol. 159(C).
  46. Karau, Sören, 2020. "Buried in the vaults of central banks: Monetary gold hoarding and the slide into the Great Depression," Discussion Papers 63/2020, Deutsche Bundesbank.
  47. Prüser, Jan, 2023. "Data-based priors for vector error correction models," International Journal of Forecasting, Elsevier, vol. 39(1), pages 209-227.
  48. George ANTON, 2022. "The importance of demand, uncertainty and monetary policy shocks from the euro area for the Romanian economy," Theoretical and Applied Economics, Asociatia Generala a Economistilor din Romania / Editura Economica, vol. 0(2(631), S), pages 25-38, Summer.
  49. Kohns, David & Potjagailo, Galina, 2023. "Flexible Bayesian MIDAS: time‑variation, group‑shrinkage and sparsity," Bank of England working papers 1025, Bank of England.
  50. Philippe Goulet Coulombe & Maximilian Gobel, 2021. "Arctic Amplification of Anthropogenic Forcing: A Vector Autoregressive Analysis," Working Papers 21-04, Chair in macroeconomics and forecasting, University of Quebec in Montreal's School of Management.
  51. Hartwig, Benny, 2022. "Bayesian VARs and prior calibration in times of COVID-19," Discussion Papers 52/2022, Deutsche Bundesbank.
  52. repec:spo:wpmain:info:hdl:2441/4u5amfvji89k4pj64fk8bf01dm is not listed on IDEAS
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.