IDEAS home Printed from https://ideas.repec.org/r/aea/aecrev/v94y2004i2p388-394.html
   My bibliography  Save this item

Was Electricity a General Purpose Technology? Evidence from Historical Patent Citations

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Kreuchauff, Florian & Teichert, Nina, 2014. "Nanotechnology as general purpose technology," Working Paper Series in Economics 53, Karlsruhe Institute of Technology (KIT), Department of Economics and Management.
  2. David Greasley & Les Oxley, 2010. "Cliometrics And Time Series Econometrics: Some Theory And Applications," Journal of Economic Surveys, Wiley Blackwell, vol. 24(5), pages 970-1042, December.
  3. Aaron K. Chatterji & Kira Fabrizio, 2012. "How Do Product Users Influence Corporate Invention?," Organization Science, INFORMS, vol. 23(4), pages 971-987, August.
  4. Svante Prado, 2014. "Yeast or mushrooms? Productivity patterns across Swedish manufacturing industries, 1869–1912," Economic History Review, Economic History Society, vol. 67(2), pages 382-408, May.
  5. Kerstin Enflo & Astrid Kander & Lennart Schön, 2008. "Identifying development blocks—a new methodology," Journal of Evolutionary Economics, Springer, vol. 18(1), pages 57-76, February.
  6. SHIMIZU, Hiroshi & 清水, 洋 & WAKUTSU, Naohiko, 2017. "Spin-Outs and Patterns of Subsequent Innovation: Technological Development of Laser Diodes in the US and Japan," IIR Working Paper 17-14, Institute of Innovation Research, Hitotsubashi University.
  7. Michele Cincera & Ela Ince, 2019. "Types of Innovation and Firm performance," Working Papers TIMES² 2019-032, ULB -- Universite Libre de Bruxelles.
  8. Kokshagina, Olga & Gillier, Thomas & Cogez, Patrick & Le Masson, Pascal & Weil, Benoit, 2017. "Using innovation contests to promote the development of generic technologies," Technological Forecasting and Social Change, Elsevier, vol. 114(C), pages 152-164.
  9. Shimizu, Hiroshi & Wakutsu, Naohiko, 2014. "Entrepreneurial Spin-Outs and Vanishing Technological Trajectory: Laser Diodes in the U.S. and Japan," IIR Working Paper 13-21, Institute of Innovation Research, Hitotsubashi University.
  10. Verluise, Cyril & Cristelli, Gabriele & Higham, Kyle & de Rassenfosse, Gaetan, 2020. "The Missing 15 Percent of Patent Citations," SocArXiv x78ys, Center for Open Science.
  11. Claire M. Weiller & Michael G. Pollitt, 2013. "Platform markets and energy services," Working Papers EPRG 1334, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
  12. Munari, Federico & Toschi, Laura, 2014. "Running ahead in the nanotechnology gold rush. Strategic patenting in emerging technologies," Technological Forecasting and Social Change, Elsevier, vol. 83(C), pages 194-207.
  13. Goldfarb, Avi & Taska, Bledi & Teodoridis, Florenta, 2023. "Could machine learning be a general purpose technology? A comparison of emerging technologies using data from online job postings," Research Policy, Elsevier, vol. 52(1).
  14. Liu, Yong & Du, Jun-liang & Yang, Jin-bi & Qian, Wu-yong & Forrest, Jeffrey Yi-Lin, 2019. "An incentive mechanism for general purpose technologies R&D based on the concept of super-conflict equilibrium: Empirical evidence from nano industrial technology in China," Technological Forecasting and Social Change, Elsevier, vol. 147(C), pages 185-197.
  15. Enflo, Kerstin & Kander, Astrid & Schön, Lennart, 2009. "Electrification and energy productivity," Ecological Economics, Elsevier, vol. 68(11), pages 2808-2817, September.
  16. RAITERI Emilio, 2015. "A time to nourish? Evaluating the impact of innovative public procurement on technological generality through patent data," Cahiers du GREThA (2007-2019) 2015-05, Groupe de Recherche en Economie Théorique et Appliquée (GREThA).
  17. Leonid Kogan & Dimitris Papanikolaou & Amit Seru & Noah Stoffman, 2017. "Technological Innovation, Resource Allocation, and Growth," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 132(2), pages 665-712.
  18. Petralia, Sergio & Kemeny, Thomas & Storper, Michael, 2023. "The transformative effects of tacit technological knowledge," LSE Research Online Documents on Economics 120154, London School of Economics and Political Science, LSE Library.
  19. Lyu, Wenjing & Liu, Jin, 2021. "Artificial Intelligence and emerging digital technologies in the energy sector," Applied Energy, Elsevier, vol. 303(C).
  20. Clifford Bekar & Kenneth Carlaw & Richard Lipsey, 2018. "General purpose technologies in theory, application and controversy: a review," Journal of Evolutionary Economics, Springer, vol. 28(5), pages 1005-1033, December.
  21. Klaus Gründler & Niklas Potrafke, 2023. "Population Aging, Retirement, and Aggregate Productivity," CESifo Working Paper Series 10594, CESifo.
  22. Ajay Agrawal & Joshua S. Gans & Avi Goldfarb, 2023. "Similarities and Differences in the Adoption of General Purpose Technologies," NBER Chapters, in: Technology, Productivity, and Economic Growth, National Bureau of Economic Research, Inc.
  23. Sophie Hooge & Olga Kokshagina & Pascal Le Masson & Kevin Levillain & Benoit Weil & Vincent Fabreguettes & Nathalie Popiolek, 2014. "Designing generic technologies in Energy Research: learning from two CEA technologies for double unknown management," Post-Print hal-00987214, HAL.
  24. Antonio Messeni Petruzzelli & Gianluca Murgia, 2020. "University–Industry collaborations and international knowledge spillovers: a joint-patent investigation," The Journal of Technology Transfer, Springer, vol. 45(4), pages 958-983, August.
  25. Arianna Martinelli & Andrea Mina & Massimo Moggi, 2021. "The enabling technologies of industry 4.0: examining the seeds of the fourth industrial revolution [Mapping innovation dynamics in the Internet of Things domain: evidence from patent analysis]," Industrial and Corporate Change, Oxford University Press and the Associazione ICC, vol. 30(1), pages 161-188.
  26. Kroll, Henning & Berghäuser, Hendrik & Blind, Knut & Neuhäusler, Peter & Scheifele, Fabian & Thielmann, Axel & Wydra, Sven, 2022. "Schlüsseltechnologien," Studien zum deutschen Innovationssystem 7-2022, Expertenkommission Forschung und Innovation (EFI) - Commission of Experts for Research and Innovation, Berlin.
  27. Chali Nondo, 2018. "Is There a Relationship between Information and Communication Technologies Infrastructure, Electricity Consumption and Total Factor Productivity? Evidence from a Panel of African Countries," International Journal of Energy Economics and Policy, Econjournals, vol. 8(4), pages 207-218.
  28. Zhang, Yi & Wu, Mengjia & Miao, Wen & Huang, Lu & Lu, Jie, 2021. "Bi-layer network analytics: A methodology for characterizing emerging general-purpose technologies," Journal of Informetrics, Elsevier, vol. 15(4).
  29. Kerstin Hotte & Taheya Tarannum & Vilhelm Verendel & Lauren Bennett, 2022. "Exploring Artificial Intelligence as a General Purpose Technology with Patent Data -- A Systematic Comparison of Four Classification Approaches," Papers 2204.10304, arXiv.org.
  30. Shih-tse Lo & Dhanoos Sutthiphisal, 2008. "Crossover Inventions And Knowledge Diffusion Of General Purpose Technologies? Evidence From The Electrical Technology," NBER Working Papers 14043, National Bureau of Economic Research, Inc.
  31. Raiteri, Emilio, 2018. "A time to nourish? Evaluating the impact of public procurement on technological generality through patent data," Research Policy, Elsevier, vol. 47(5), pages 936-952.
  32. Greasley, David & Oxley, Les, 2010. "Knowledge, natural resource abundance and economic development: Lessons from New Zealand 1861-1939," Explorations in Economic History, Elsevier, vol. 47(4), pages 443-459, October.
  33. Heikkilä, Jussi & Rissanen, Julius & Ali-Vehmas, Timo, 2023. "Coopetition, standardization and general purpose technologies: A framework and an application," Telecommunications Policy, Elsevier, vol. 47(4).
  34. Bryan Kelly & Dimitris Papanikolaou & Amit Seru & Matt Taddy, 2021. "Measuring Technological Innovation over the Long Run," American Economic Review: Insights, American Economic Association, vol. 3(3), pages 303-320, September.
  35. Li, George Yunxiong & Ascani, Andrea & Iammarino, Simona, 2024. "The material basis of modern technologies. A case study on rare metals," Research Policy, Elsevier, vol. 53(1).
  36. Huang, Hung-Chun & Su, Hsin-Ning, 2019. "The innovative fulcrums of technological interdisciplinarity: An analysis of technology fields in patents," Technovation, Elsevier, vol. 84, pages 59-70.
  37. Chipten Valibhay & Pascal Le Masson & Benoit Weil, 2018. "Comment l'analyse des modèles de l'invention dans le droit de la propriété intellectuelle permet de caractériser des régimes de conception et des stratégies d'organisation des connaissances," Post-Print hal-01904734, HAL.
  38. Koh, Ping-Sheng & Reeb, David M., 2015. "Missing R&D," Journal of Accounting and Economics, Elsevier, vol. 60(1), pages 73-94.
  39. Leonard Dudley, 2010. "General Purpose Technologies and the Industrial Revolution," Papers on Economics and Evolution 2010-11, Philipps University Marburg, Department of Geography.
  40. Shin, Juneseuk & Park, Yongtae, 2007. "Building the national ICT frontier: The case of Korea," Information Economics and Policy, Elsevier, vol. 19(2), pages 249-277, June.
  41. Bresnahan, Timothy, 2010. "General Purpose Technologies," Handbook of the Economics of Innovation, in: Bronwyn H. Hall & Nathan Rosenberg (ed.), Handbook of the Economics of Innovation, edition 1, volume 2, chapter 0, pages 761-791, Elsevier.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.