IDEAS home Printed from https://ideas.repec.org/p/zbw/smwzei/03.html
   My bibliography  Save this paper

Plattformökonomie – zwischen Abwehr und Wunschdenken

Author

Listed:
  • Lenz, Fulko

Abstract

Vor noch nicht allzu langer Zeit wurden mit der Entstehung von plattformbasierten, digitalen Geschäftsmodellen große Hoffnungen verbunden. Mittlerweile hat sich die Stimmung gewendet und vor allem die größten und prominentesten Vertreter dieser neuen Plattformökonomie entwickeln sich zunehmend zum politischen Feindbild. Die Liste der Vorwürfe ist lang und reicht von Missbrauch ausufernder Monopolmacht über grenzenlose Datensammelwut bis hin zu steuerlicher Trickserei. Allerdings ist die politische Haltung zur Plattformökonomie durchaus zwiespältig: Während einerseits die Klagen über bestimmte Online-Plattformen und deren Verhaltensweisen immer lauter werden, schaut man anderseits mit einer gehörigen Portion Neid auf den Erfolg genau dieser Unternehmen und wünscht sich längst nicht mehr nur insgeheim ein "europäisches Google". Denn es lässt sich kaum bestreiten, dass die großen und global agierenden Online-Plattformen bis auf wenige Ausnahmen weder deutsche noch europäische Wurzeln aufweisen. Vor diesem Hintergrund analysiert die vorliegende Studie, wie den Herausforderungen der Plattformökonomie im Bereich der Wettbewerbs-, Arbeitsmarkt- und Steuerpolitik begegnet werden kann, welche Befürchtungen möglicherweise überzogen sind und welche Maßnahmen bei den Bemühungen um die Stärkung einer heimischen Plattformökonomie zu priorisieren sind.

Suggested Citation

  • Lenz, Fulko, 2020. "Plattformökonomie – zwischen Abwehr und Wunschdenken," Zeitthemen 03, Stiftung Marktwirtschaft / The Market Economy Foundation, Berlin.
  • Handle: RePEc:zbw:smwzei:03
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/215493/1/Zeitthemen-03-2020.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ajay Agrawal & Joshua Gans & Avi Goldfarb, 2019. "Economic Policy for Artificial Intelligence," Innovation Policy and the Economy, University of Chicago Press, vol. 19(1), pages 139-159.
    2. Ajay Agrawal & Joshua Gans & Avi Goldfarb, 2019. "The Economics of Artificial Intelligence: An Agenda," NBER Books, National Bureau of Economic Research, Inc, number agra-1, January-J.
    3. Maier, Michael F. & Viete, Steffen & Ody, Margard, 2017. "Plattformbasierte Erwerbsarbeit: Stand der empirischen Forschung," IZA Research Reports 81, Institute of Labor Economics (IZA).
    4. Geoffrey G. Parker & Marshall W. Van Alstyne, 2005. "Two-Sided Network Effects: A Theory of Information Product Design," Management Science, INFORMS, vol. 51(10), pages 1494-1504, October.
    5. Haucap, Justus & Kehder, Christiane, 2018. "Welchen Ordnungsrahmen braucht die Sharing Economy?," DICE Ordnungspolitische Perspektiven 94, Heinrich Heine University Düsseldorf, Düsseldorf Institute for Competition Economics (DICE).
    6. Giulio Federico & Fiona Scott Morton & Carl Shapiro, 2019. "Antitrust and Innovation: Welcoming and Protecting Disruption," NBER Chapters, in: Innovation Policy and the Economy, Volume 20, pages 125-190, National Bureau of Economic Research, Inc.
    7. Wolfgang Kerber & Heike Schweitzer, 2017. "Interoperability in the digital economy," MAGKS Papers on Economics 201712, Philipps-Universität Marburg, Faculty of Business Administration and Economics, Department of Economics (Volkswirtschaftliche Abteilung).
    8. Haucap, Justus & Pavel, Ferdinand & Aigner, Rafael & Arnold, Michael & Hottenrott, Moritz & Kehder, Christiane, 2015. "Chancen der Digitalisierung auf Märkten für urbane Mobilität: Das Beispiel Uber," DICE Ordnungspolitische Perspektiven 73, Heinrich Heine University Düsseldorf, Düsseldorf Institute for Competition Economics (DICE).
    9. Achim Wambach & John Weche, 2018. "Hat Deutschland ein Marktmachtproblem? [Does Germany Have a Market Power Problem?]," Wirtschaftsdienst, Springer;ZBW - Leibniz Information Centre for Economics, vol. 98(11), pages 791-798, November.
    10. Paul Seabright, 2005. "National and European Champions - Burden or Blessing?," CESifo Forum, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, vol. 6(02), pages 52-55, August.
    11. Matt Taddy, 2018. "The Technological Elements of Artificial Intelligence," NBER Working Papers 24301, National Bureau of Economic Research, Inc.
    12. Wolfgang Ziebart, 2005. "National and European Champions - Burden or Blessing?," CESifo Forum, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, vol. 6(02), pages 56-58, August.
    13. Schaefer, Maximilian & Sapi, Geza & Lorincz, Szabolcs, 2018. "The effect of big data on recommendation quality: The example of internet search," DICE Discussion Papers 284, Heinrich Heine University Düsseldorf, Düsseldorf Institute for Competition Economics (DICE).
    14. Matt Taddy, 2018. "The Technological Elements of Artificial Intelligence," NBER Chapters, in: The Economics of Artificial Intelligence: An Agenda, pages 61-87, National Bureau of Economic Research, Inc.
    15. Damien NEVEN & Paul SEABRIGHT, 1995. "European Industrial Policy: The Airbus Case," Cahiers de Recherches Economiques du Département d'économie 9509, Université de Lausanne, Faculté des HEC, Département d’économie.
    16. Lawrence F. Katz & Alan B. Krueger, 2019. "Understanding Trends in Alternative Work Arrangements in the United States," NBER Working Papers 25425, National Bureau of Economic Research, Inc.
    17. Fuest, Clemens & Spengel, Christoph & Finke, Katharina & Heckemeyer, Jost H. & Nusser, Hannah, 2013. "Profit shifting and 'aggressive' tax planning by multinational firms: Issues and options for reform," ZEW Discussion Papers 13-078, ZEW - Leibniz Centre for European Economic Research.
    18. Justus Haucap & Ulrich Heimeshoff, 2014. "Google, Facebook, Amazon, eBay: Is the Internet driving competition or market monopolization?," International Economics and Economic Policy, Springer, vol. 11(1), pages 49-61, February.
    19. Agrawal, Ajay & Gans, Joshua & Goldfarb, Avi (ed.), 2019. "The Economics of Artificial Intelligence," National Bureau of Economic Research Books, University of Chicago Press, number 9780226613338, December.
    20. Hagen Krämer, 2019. "Digitalisierung, Monopolbildung und wirtschaftliche Ungleichheit [Digitisation, Monopoly Formation and Economic Inequality]," Wirtschaftsdienst, Springer;ZBW - Leibniz Information Centre for Economics, vol. 99(1), pages 47-52, January.
    21. Thomas R. Tørsløv & Ludvig S. Wier & Gabriel Zucman, 2018. "The Missing Profits of Nations," NBER Working Papers 24701, National Bureau of Economic Research, Inc.
    22. Werding, Martin, 2016. "Rentenfinanzierung im demographischen Wandel: Tragfähigkeitsprobleme und Handlungsoptionen," Working Papers 05/2016, German Council of Economic Experts / Sachverständigenrat zur Begutachtung der gesamtwirtschaftlichen Entwicklung.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rojahn, Gerd, 2021. "Auswirkungen der Digitalisierung auf die Arbeitswelt," Arbeitsberichte der ARL: Aufsätze, in: Spellerberg, Annette (ed.), Digitalisierung in ländlichen und verdichteten Räumen, volume 31, pages 89-101, ARL – Akademie für Raumentwicklung in der Leibniz-Gemeinschaft.
    2. Lenz, Fulko, 2022. "Mehr Innovationen und Unternehmertum in Deutschland durch Wiederbelebung des Leistungsprinzips," Argumente zur Marktwirtschaft und Politik 163, Stiftung Marktwirtschaft / The Market Economy Foundation, Berlin.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andrea Szalavetz, 2019. "Artificial Intelligence-Based Development Strategy in Dependent Market Economies - Any Room amidst Big Power Rivalry?," Central European Business Review, Prague University of Economics and Business, vol. 2019(4), pages 40-54.
    2. Kopka, Alexander & Grashof, Nils, 2022. "Artificial intelligence: Catalyst or barrier on the path to sustainability?," Technological Forecasting and Social Change, Elsevier, vol. 175(C).
    3. Ajay Agrawal & Joshua Gans & Avi Goldfarb, 2019. "Economic Policy for Artificial Intelligence," Innovation Policy and the Economy, University of Chicago Press, vol. 19(1), pages 139-159.
    4. Selale Tuzel & Miao Ben Zhang, 2021. "Economic Stimulus at the Expense of Routine‐Task Jobs," Journal of Finance, American Finance Association, vol. 76(6), pages 3347-3399, December.
    5. Jérôme Dugast & Thierry Foucault, 2020. "Equilibrium Data Mining and Data Abundance," Post-Print hal-02933315, HAL.
    6. Aubert, Cécile & Falck, Oliver & Heblich, Stephan, . "Subsidizing National Champions: An Evolutionary Perspective," Chapters in Economics,, University of Munich, Department of Economics.
    7. Belloc, Filippo & Burdin, Gabriel & Cattani, Luca & Ellis, William & Landini, Fabio, 2022. "Coevolution of job automation risk and workplace governance," Research Policy, Elsevier, vol. 51(3).
    8. Dirk Czarnitzki & Gastón P Fernández & Christian Rammer, 2022. "Artificial Intelligence and Firm-level Productivity," Working Papers of Department of Management, Strategy and Innovation, Leuven 690486, KU Leuven, Faculty of Economics and Business (FEB), Department of Management, Strategy and Innovation, Leuven.
    9. Yingying Lu & Yixiao Zhou, 2021. "A review on the economics of artificial intelligence," Journal of Economic Surveys, Wiley Blackwell, vol. 35(4), pages 1045-1072, September.
    10. Fossen, Frank M. & Sorgner, Alina, 2022. "New digital technologies and heterogeneous wage and employment dynamics in the United States: Evidence from individual-level data," Technological Forecasting and Social Change, Elsevier, vol. 175(C).
    11. Alessandro Sterlacchini, 2022. "AI Patenting and Employment: Evidence from the World's Top R&D Investors," Working Papers 462, Universita' Politecnica delle Marche (I), Dipartimento di Scienze Economiche e Sociali.
    12. Haucap, Justus, 2018. "Big Data aus wettbewerbs- und ordnungspolitischer Perspektive," DICE Ordnungspolitische Perspektiven 96, Heinrich Heine University Düsseldorf, Düsseldorf Institute for Competition Economics (DICE).
    13. J. Klinger & J. Mateos-Garcia & K. Stathoulopoulos, 2018. "Deep learning, deep change? Mapping the development of the Artificial Intelligence General Purpose Technology," Papers 1808.06355, arXiv.org.
    14. Colin Wessendorf & Alexander Kopka & Dirk Fornahl, 2021. "The impact of the six European Key Enabling Technologies (KETs) on regional knowledge creation," Papers in Evolutionary Economic Geography (PEEG) 2127, Utrecht University, Department of Human Geography and Spatial Planning, Group Economic Geography, revised Sep 2021.
    15. Oliver Falck & Johannes Koenen, 2020. "Rohstoff „Daten“: Volkswirtschaflicher Nutzen von Datenbereitstellung – eine Bestandsaufnahme," ifo Forschungsberichte, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 113, November.
    16. Rammer, Christian & Fernández, Gastón P. & Czarnitzki, Dirk, 2021. "Artificial intelligence and industrial innovation: Evidence from firm-level data," ZEW Discussion Papers 21-036, ZEW - Leibniz Centre for European Economic Research.
    17. DUERNECKER Georg & SANCHEZ MARTINEZ Miguel, 2021. "Structural change and productivity growth in the European Union: Past, present and future," JRC Working Papers on Territorial Modelling and Analysis 2021-09, Joint Research Centre (Seville site).
    18. Combes, Pierre-Philippe & Gobillon, Laurent & Zylberberg, Yanos, 2022. "Urban economics in a historical perspective: Recovering data with machine learning," Regional Science and Urban Economics, Elsevier, vol. 94(C).
    19. Ehsan Valavi & Joel Hestness & Newsha Ardalani & Marco Iansiti, 2022. "Time and the Value of Data," Papers 2203.09118, arXiv.org.
    20. Gries, Thomas & Naudé, Wim, 2022. "Modelling artificial intelligence in economics," Journal for Labour Market Research, Institut für Arbeitsmarkt- und Berufsforschung (IAB), Nürnberg [Institute for Employment Research, Nuremberg, Germany], vol. 56, pages 1-12.

    More about this item

    Keywords

    Digitalisierung; Internet; Wettbewerbspolitik;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:smwzei:03. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: https://edirc.repec.org/data/kkstwde.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/kkstwde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.