IDEAS home Printed from https://ideas.repec.org/p/zbw/safewp/25.html
   My bibliography  Save this paper

Systemic risk in the financial sector: What can se learn from option markets?

Author

Listed:
  • Kraft, Holger
  • Schmidt, Alexander

Abstract

In this paper, we propose a novel approach on how to estimate systemic risk and identify its key determinants. For all US financial companies with publicly traded equity options, we extract their option-implied value-at-risks (VaRs) and measure the spillover effects between individual company VaRs and the option-implied VaR of an US financial index. First, we study the spillover effect of increasing company risks on the financial sector. Second, we analyze which companies are most affected if the tail risk of the financial sector increases. We find that key accounting and market valuation metrics such as size, leverage, balance sheet composition, market-to-book ratio and earnings have a significant influence on the systemic risk profile of a financial institution. In contrast to earlier studies, the employed panel vector autoregression (PVAR) estimator allows for a causal interpretation of the results.

Suggested Citation

  • Kraft, Holger & Schmidt, Alexander, 2013. "Systemic risk in the financial sector: What can se learn from option markets?," SAFE Working Paper Series 25, Leibniz Institute for Financial Research SAFE.
  • Handle: RePEc:zbw:safewp:25
    DOI: 10.2139/ssrn.2294349
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/88728/1/775714615.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.2139/ssrn.2294349?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Nikolaus Hautsch & Julia Schaumburg & Melanie Schienle, 2015. "Financial Network Systemic Risk Contributions," Review of Finance, European Finance Association, vol. 19(2), pages 685-738.
    2. John C. Driscoll & Aart C. Kraay, 1998. "Consistent Covariance Matrix Estimation With Spatially Dependent Panel Data," The Review of Economics and Statistics, MIT Press, vol. 80(4), pages 549-560, November.
    3. Busch, Thomas & Christensen, Bent Jesper & Nielsen, Morten Ørregaard, 2011. "The role of implied volatility in forecasting future realized volatility and jumps in foreign exchange, stock, and bond markets," Journal of Econometrics, Elsevier, vol. 160(1), pages 48-57, January.
    4. Breeden, Douglas T & Litzenberger, Robert H, 1978. "Prices of State-contingent Claims Implicit in Option Prices," The Journal of Business, University of Chicago Press, vol. 51(4), pages 621-651, October.
    5. Bryan Kelly & Hanno Lustig & Stijn Van Nieuwerburgh, 2016. "Too-Systemic-to-Fail: What Option Markets Imply about Sector-Wide Government Guarantees," American Economic Review, American Economic Association, vol. 106(6), pages 1278-1319, June.
    6. Canina, Linda & Figlewski, Stephen, 1993. "The Informational Content of Implied Volatility," The Review of Financial Studies, Society for Financial Studies, vol. 6(3), pages 659-681.
    7. Adams, Zeno & Füss, Roland & Gropp, Reint, 2014. "Spillover Effects among Financial Institutions: A State-Dependent Sensitivity Value-at-Risk Approach," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 49(3), pages 575-598, June.
    8. Christoffersen, Peter & Hahn, Jinyong & Inoue, Atsushi, 2001. "Testing and comparing Value-at-Risk measures," Journal of Empirical Finance, Elsevier, vol. 8(3), pages 325-342, July.
    9. James Chong, 2004. "Value at risk from econometric models and implied from currency options," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 23(8), pages 603-620.
    10. White, Halbert & Kim, Tae-Hwan & Manganelli, Simone, 2010. "VAR for VaR: measuring systemic risk using multivariate regression quantiles," MPRA Paper 35372, University Library of Munich, Germany.
    11. Lamoureux, Christopher G & Lastrapes, William D, 1993. "Forecasting Stock-Return Variance: Toward an Understanding of Stochastic Implied Volatilities," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 293-326.
    12. Blair, Bevan J. & Poon, Ser-Huang & Taylor, Stephen J., 2001. "Forecasting S&P 100 volatility: the incremental information content of implied volatilities and high-frequency index returns," Journal of Econometrics, Elsevier, vol. 105(1), pages 5-26, November.
    13. Georgiadis, Georgios, 2012. "The panel conditionally homogenous vectorautoregressive model," MPRA Paper 37755, University Library of Munich, Germany.
    14. Christensen, B. J. & Prabhala, N. R., 1998. "The relation between implied and realized volatility," Journal of Financial Economics, Elsevier, vol. 50(2), pages 125-150, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jorge V. Pérez-Rodríguez, 2020. "Another look at the implied and realised volatility relation: a copula-based approach," Risk Management, Palgrave Macmillan, vol. 22(1), pages 38-64, March.
    2. Christoffersen, Peter & Jacobs, Kris & Chang, Bo Young, 2013. "Forecasting with Option-Implied Information," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 581-656, Elsevier.
    3. Peter Christoffersen & Kris Jacobs & Gregory Vainberg, 2007. "Forward-Looking Betas," CREATES Research Papers 2007-39, Department of Economics and Business Economics, Aarhus University.
    4. Bo-Young Chang & Peter Christoffersen & Kris Jacobs & Gregory Vainberg, 2011. "Option-Implied Measures of Equity Risk," Review of Finance, European Finance Association, vol. 16(2), pages 385-428.
    5. Kim, Jun Sik & Ryu, Doojin, 2015. "Are the KOSPI 200 implied volatilities useful in value-at-risk models?," Emerging Markets Review, Elsevier, vol. 22(C), pages 43-64.
    6. Dufour, Jean-Marie & García, René & Taamouti, Abderrahim, 2008. "Measuring causality between volatility and returns with high-frequency data," UC3M Working papers. Economics we084422, Universidad Carlos III de Madrid. Departamento de Economía.
    7. Christoffersen, Peter & Heston, Steven & Jacobs, Kris, 2010. "Option Anomalies and the Pricing Kernel," Working Papers 11-17, University of Pennsylvania, Wharton School, Weiss Center.
    8. Taylor, Stephen J. & Yadav, Pradeep K. & Zhang, Yuanyuan, 2009. "The information content of implied volatilities and model-free volatility expectations: Evidence from options written on individual stocks," CFR Working Papers 09-07, University of Cologne, Centre for Financial Research (CFR).
    9. Bali, Turan G. & Weinbaum, David, 2007. "A conditional extreme value volatility estimator based on high-frequency returns," Journal of Economic Dynamics and Control, Elsevier, vol. 31(2), pages 361-397, February.
    10. Bams, Dennis & Blanchard, Gildas & Lehnert, Thorsten, 2017. "Volatility measures and Value-at-Risk," International Journal of Forecasting, Elsevier, vol. 33(4), pages 848-863.
    11. Neely, Christopher J., 2009. "Forecasting foreign exchange volatility: Why is implied volatility biased and inefficient? And does it matter?," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 19(1), pages 188-205, February.
    12. Becker, Ralf & Clements, Adam E. & White, Scott I., 2006. "On the informational efficiency of S&P500 implied volatility," The North American Journal of Economics and Finance, Elsevier, vol. 17(2), pages 139-153, August.
    13. Tsiaras, Leonidas, 2009. "The Forecast Performance of Competing Implied Volatility Measures: The Case of Individual Stocks," Finance Research Group Working Papers F-2009-02, University of Aarhus, Aarhus School of Business, Department of Business Studies.
    14. Peter Christoffersen & Stefano Mazzotta, 2004. "The Informational Content of Over-the-Counter Currency Options," CIRANO Working Papers 2004s-16, CIRANO.
    15. Busch, Thomas & Christensen, Bent Jesper & Nielsen, Morten Ørregaard, 2011. "The role of implied volatility in forecasting future realized volatility and jumps in foreign exchange, stock, and bond markets," Journal of Econometrics, Elsevier, vol. 160(1), pages 48-57, January.
    16. Taylor, Stephen J. & Yadav, Pradeep K. & Zhang, Yuanyuan, 2010. "The information content of implied volatilities and model-free volatility expectations: Evidence from options written on individual stocks," Journal of Banking & Finance, Elsevier, vol. 34(4), pages 871-881, April.
    17. Ederington, Louis & Guan, Wei, 2005. "The information frown in option prices," Journal of Banking & Finance, Elsevier, vol. 29(6), pages 1429-1457, June.
    18. Ricardo Crisóstomo & Lorena Couso, 2018. "Financial density forecasts: A comprehensive comparison of risk‐neutral and historical schemes," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 37(5), pages 589-603, August.
    19. Wilkens, Sascha & Roder, Klaus, 2006. "The informational content of option-implied distributions: Evidence from the Eurex index and interest rate futures options market," Global Finance Journal, Elsevier, vol. 17(1), pages 50-74, September.
    20. McGee, Richard J. & McGroarty, Frank, 2017. "The risk premium that never was: A fair value explanation of the volatility spread," European Journal of Operational Research, Elsevier, vol. 262(1), pages 370-380.

    More about this item

    Keywords

    Systemic risk; Value-at-risk; Equity options; Implied volatility;
    All these keywords.

    JEL classification:

    • G01 - Financial Economics - - General - - - Financial Crises
    • G28 - Financial Economics - - Financial Institutions and Services - - - Government Policy and Regulation
    • G32 - Financial Economics - - Corporate Finance and Governance - - - Financing Policy; Financial Risk and Risk Management; Capital and Ownership Structure; Value of Firms; Goodwill

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:safewp:25. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/csafede.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.