IDEAS home Printed from https://ideas.repec.org/p/zbw/itso20/224871.html
   My bibliography  Save this paper

Understanding Mobile Application Usage Using Battery Status and Wi-Fi Network

Author

Listed:
  • Park, Keeyeon
  • Kim, Hye-jin

Abstract

Since the prevalence of smartphones, the smartphone application (app) industry has penetrated rapidly. Such growth encourages a deeper understanding of mobile user behavior. Using contextual information, previous studies have attempted to understand when users launch different types of app categories. However, most were limited to the number of apps and categories. This study aims to contribute to the general understanding of mobile app usage in a wider range of categories. We analyzed contextual information that influences smartphone users' anxiety, such as the battery state and Wi-Fi network. We empirically examined a distinctive data set that contains mobile log data across a panel of users. As a result, our findings demonstrate that contextual features such as battery charging duration and Wi-Fi connection are highly related to the choice probability of app category usage. It reveals the importance of dynamic conditions incurred from the battery state and Wi-Fi connection when users choose which app to launch. Our findings have practical implications for smartphone app companies who seek app-targeting strategies or marketers who use mobile apps as a means of advertising to interact with potential customers.

Suggested Citation

  • Park, Keeyeon & Kim, Hye-jin, 2020. "Understanding Mobile Application Usage Using Battery Status and Wi-Fi Network," ITS Conference, Online Event 2020 224871, International Telecommunications Society (ITS).
  • Handle: RePEc:zbw:itso20:224871
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/224871/1/Park-Kim.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kim, Mingyung & Kim, Jeeyeon & Choi, Jeonghye & Trivedi, Minakshi, 2017. "Mobile Shopping Through Applications: Understanding Application Possession and Mobile Purchase," Journal of Interactive Marketing, Elsevier, vol. 39(C), pages 55-68.
    2. Peter M. Guadagni & John D. C. Little, 1983. "A Logit Model of Brand Choice Calibrated on Scanner Data," Marketing Science, INFORMS, vol. 2(3), pages 203-238.
    3. Anindya Ghose & Sang Pil Han, 2011. "An Empirical Analysis of User Content Generation and Usage Behavior on the Mobile Internet," Management Science, INFORMS, vol. 57(9), pages 1671-1691, September.
    4. Jeonghye Choi & David R. Bell & Leonard M. Lodish, 2012. "Traditional and IS-Enabled Customer Acquisition on the Internet," Management Science, INFORMS, vol. 58(4), pages 754-769, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michelle Andrews & Xueming Luo & Zheng Fang & Anindya Ghose, 2016. "Mobile Ad Effectiveness: Hyper-Contextual Targeting with Crowdedness," Marketing Science, INFORMS, vol. 35(2), pages 218-233, March.
    2. Kim, Mingyung & Kim, Jeeyeon & Choi, Jeonghye & Trivedi, Minakshi, 2017. "Mobile Shopping Through Applications: Understanding Application Possession and Mobile Purchase," Journal of Interactive Marketing, Elsevier, vol. 39(C), pages 55-68.
    3. Clarence Lee & Elie Ofek & Thomas J. Steenburgh, 2018. "Personal and Social Usage: The Origins of Active Customers and Ways to Keep Them Engaged," Management Science, INFORMS, vol. 64(6), pages 2473-2495, June.
    4. Yoon, Jae Yeon & Lee, Chaehyeon & Choi, Jeonghye & Chang, Sue Ryung & Kim, Jikyung, 2022. "The effect of social media apps on shopping apps," Journal of Business Research, Elsevier, vol. 148(C), pages 23-32.
    5. Anindya Ghose & Avi Goldfarb & Sang Pil Han, 2013. "How Is the Mobile Internet Different? Search Costs and Local Activities," Information Systems Research, INFORMS, vol. 24(3), pages 613-631, September.
    6. Venkatesh Shankar & Pablo Azar & Matthew Fuller, 2008. "—: A Multicategory Brand Equity Model and Its Application at Allstate," Marketing Science, INFORMS, vol. 27(4), pages 567-584, 07-08.
    7. Noah Gans & George Knox & Rachel Croson, 2007. "Simple Models of Discrete Choice and Their Performance in Bandit Experiments," Manufacturing & Service Operations Management, INFORMS, vol. 9(4), pages 383-408, December.
    8. Chen Zhou & Shrihari Sridhar & Rafael Becerril-Arreola & Tony Haitao Cui & Yan Dong, 2019. "Promotions as competitive reactions to recalls and their consequences," Journal of the Academy of Marketing Science, Springer, vol. 47(4), pages 702-722, July.
    9. David R. Bell & Jeongwen Chiang & V. Padmanabhan, 1999. "The Decomposition of Promotional Response: An Empirical Generalization," Marketing Science, INFORMS, vol. 18(4), pages 504-526.
    10. Polo, Yolanda & Sese, F. Javier & Verhoef, Peter C., 2011. "The Effect of Pricing and Advertising on Customer Retention in a Liberalizing Market," Journal of Interactive Marketing, Elsevier, vol. 25(4), pages 201-214.
    11. Yücel, Eda & Karaesmen, Fikri & Salman, F. Sibel & Türkay, Metin, 2009. "Optimizing product assortment under customer-driven demand substitution," European Journal of Operational Research, Elsevier, vol. 199(3), pages 759-768, December.
    12. Andrés Elberg & Pedro M. Gardete & Rosario Macera & Carlos Noton, 2019. "Dynamic effects of price promotions: field evidence, consumer search, and supply-side implications," Quantitative Marketing and Economics (QME), Springer, vol. 17(1), pages 1-58, March.
    13. Yu Ding & Wayne S. DeSarbo & Dominique M. Hanssens & Kamel Jedidi & John G. Lynch & Donald R. Lehmann, 2020. "The past, present, and future of measurement and methods in marketing analysis," Marketing Letters, Springer, vol. 31(2), pages 175-186, September.
    14. Kim, Jeeyeon & Kim, Mingyung & Choi, Jeonghye & Trivedi, Minakshi, 2019. "Offline social interactions and online shopping demand: Does the degree of social interactions matter?," Journal of Business Research, Elsevier, vol. 99(C), pages 373-381.
    15. Shivaram Subramanian & Hanif Sherali, 2010. "A fractional programming approach for retail category price optimization," Journal of Global Optimization, Springer, vol. 48(2), pages 263-277, October.
    16. Dan Horsky & Sanjog Misra & Paul Nelson, 2006. "Observed and Unobserved Preference Heterogeneity in Brand-Choice Models," Marketing Science, INFORMS, vol. 25(4), pages 322-335, 07-08.
    17. Francesca Bassi & Fulvia Pennoni & Luca Rossetto, 2020. "The Italian market of sparkling wines: Latent variable models for brand positioning, customer loyalty, and transitions across brands' preferences," Agribusiness, John Wiley & Sons, Ltd., vol. 36(4), pages 542-567, October.
    18. Vishal Gaur & Young-Hoon Park, 2007. "Asymmetric Consumer Learning and Inventory Competition," Management Science, INFORMS, vol. 53(2), pages 227-240, February.
    19. Brenda Mak & Paul Beckman & Nicole Bohn, 2016. "Perceived Usefulness and Satisfaction of Mobile Phone for Users with Disabilities," International Journal of Innovation and Technology Management (IJITM), World Scientific Publishing Co. Pte. Ltd., vol. 13(02), pages 1-16, April.
    20. Staudigel, Matthias & Oehlmann, Malte & Roosen, Jutta, 2024. "Demand effects of unilateral versus industry-wide sugar reduction scenarios," Food Policy, Elsevier, vol. 126(C).

    More about this item

    Keywords

    mobile industry; battery state; choice model; mobile app usage;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:itso20:224871. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: http://www.itseurope.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.