IDEAS home Printed from https://ideas.repec.org/p/zbw/hwwadp/358.html
   My bibliography  Save this paper

The Effect of the German Renewable Energy Act (EEG) on "the Electricity Price"

Author

Listed:
  • Bode, Sven
  • Groscurth, Helmuth-Michael

Abstract

Many technologies that produce electricity from renewable energy sources are currently not competitive. This is due to the fact that their generation cost is higher than that of conventional thermal power plants. Nevertheless, since using renewable energies has a number of positive effects, these installations have been supported by German public policy for many years. This support is currently demonstrated very successfully by the German Renewable Energy Act (EEG), which provides for fixed feed-in tariffs (FITs). The costs of this support scheme are distributed to the electricity consumers. Due to the so-called EEG levy, electricity costs of industry are increased and as a result their competitiveness is decreased. Consequently, electricity intensive enterprises have protested against the levy on a regular basis and finally achieved a reduction of the levy. However, the potential effect of the EEG on the wholesale price for ele ctricity has not yet been considered. Against this background, we analyze the effect of the EEG on electricity prices in a perfect market. We will show that the support of electricity production from renewable energy decreases the wholesale price of electricity. Consequently, electricity costs of companies that are subject to the reduced EEG levy may decrease too.

Suggested Citation

  • Bode, Sven & Groscurth, Helmuth-Michael, 2006. "The Effect of the German Renewable Energy Act (EEG) on "the Electricity Price"," HWWA Discussion Papers 358, Hamburg Institute of International Economics (HWWA).
  • Handle: RePEc:zbw:hwwadp:358
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/19388/1/358.pdf
    Download Restriction: no

    References listed on IDEAS

    as
    1. Meyer, Niels I., 2003. "European schemes for promoting renewables in liberalised markets," Energy Policy, Elsevier, vol. 31(7), pages 665-676, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alsaleh, Mohd & Abdul-Rahim, A.S., 2018. "Determinants of cost efficiency of bioenergy industry: Evidence from EU28 countries," Renewable Energy, Elsevier, vol. 127(C), pages 746-762.
    2. Herrmann, J.K. & Savin, I., 2017. "Optimal policy identification: Insights from the German electricity market," Technological Forecasting and Social Change, Elsevier, vol. 122(C), pages 71-90.
    3. Herrmann, Johannes & Savin, Ivan, 2015. "Evolution of the electricity market in Germany: Identifying policy implications by an agent-based model," VfS Annual Conference 2015 (Muenster): Economic Development - Theory and Policy 112959, Verein für Socialpolitik / German Economic Association.
    4. Fais, Birgit & Blesl, Markus & Fahl, Ulrich & Voß, Alfred, 2014. "Comparing different support schemes for renewable electricity in the scope of an energy systems analysis," Applied Energy, Elsevier, vol. 131(C), pages 479-489.
    5. Sébastien Phan & Fabien Roques, 2015. "Is the depressive effect of renewables on power prices contagious? A cross border econometric analysis," Cambridge Working Papers in Economics 1527, Faculty of Economics, University of Cambridge.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bergek, Anna & Jacobsson, Staffan, 2010. "Are tradable green certificates a cost-efficient policy driving technical change or a rent-generating machine? Lessons from Sweden 2003-2008," Energy Policy, Elsevier, vol. 38(3), pages 1255-1271, March.
    2. Lund, Henrik & Clark II, Woodrow W., 2008. "Sustainable energy and transportation systems introduction and overview," Utilities Policy, Elsevier, vol. 16(2), pages 59-62, June.
    3. Zhao, Xiaoli & Li, Shujie & Zhang, Sufang & Yang, Rui & Liu, Suwei, 2016. "The effectiveness of China's wind power policy: An empirical analysis," Energy Policy, Elsevier, vol. 95(C), pages 269-279.
    4. Gurkan, G. & Langestraat, R., 2013. "Modeling And Analysis Of Renewable Energy Obligations And Technology Bandings In the UK Electricity Market," Other publications TiSEM a7a6216c-21eb-442e-a942-3, Tilburg University, School of Economics and Management.
    5. Oyedepo, Sunday Olayinka, 2014. "Towards achieving energy for sustainable development in Nigeria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 255-272.
    6. Julian Dieler & Jana Lippelt, 2012. "Kurz zum Klima: Die grüne Förderlandschaft Europa," ifo Schnelldienst, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, vol. 65(06), pages 34-37, March.
    7. Huang, Shih-Chieh & Lo, Shang-Lien & Lin, Yen-Ching, 2013. "Application of a fuzzy cognitive map based on a structural equation model for the identification of limitations to the development of wind power," Energy Policy, Elsevier, vol. 63(C), pages 851-861.
    8. Dinica, Valentina, 2008. "Initiating a sustained diffusion of wind power: The role of public-private partnerships in Spain," Energy Policy, Elsevier, vol. 36(9), pages 3562-3571, September.
    9. Unger, Thomas & Ahlgren, Erik O., 2005. "Impacts of a common green certificate market on electricity and CO2-emission markets in the Nordic countries," Energy Policy, Elsevier, vol. 33(16), pages 2152-2163, November.
    10. Szarka, Joseph, 2006. "Wind power, policy learning and paradigm change," Energy Policy, Elsevier, vol. 34(17), pages 3041-3048, November.
    11. Verbruggen, Aviel, 2009. "Performance evaluation of renewable energy support policies, applied on Flanders' tradable certificates system," Energy Policy, Elsevier, vol. 37(4), pages 1385-1394, April.
    12. Sakah, Marriette & Diawuo, Felix Amankwah & Katzenbach, Rolf & Gyamfi, Samuel, 2017. "Towards a sustainable electrification in Ghana: A review of renewable energy deployment policies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 544-557.
    13. Gurkan, G. & Langestraat, R., 2013. "Modeling And Analysis Of Renewable Energy Obligations And Technology Bandings In the UK Electricity Market," Discussion Paper 2013-016, Tilburg University, Center for Economic Research.
    14. Agnolucci, Paolo, 2008. "Factors influencing the likelihood of regulatory changes in renewable electricity policies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(1), pages 141-161, January.
    15. Winkler, Harald, 2005. "Renewable energy policy in South Africa: policy options for renewable electricity," Energy Policy, Elsevier, vol. 33(1), pages 27-38, January.
    16. Brzezińska-Rawa, Anna & Goździewicz-Biechońska, Justyna, 2014. "Recent developments in the wind energy sector in Poland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 79-87.
    17. Adams, Michelle & Wheeler, David & Woolston, Genna, 2011. "A participatory approach to sustainable energy strategy development in a carbon-intensive jurisdiction: The case of Nova Scotia," Energy Policy, Elsevier, vol. 39(5), pages 2550-2559, May.
    18. Ringel, Marc, 2006. "Fostering the use of renewable energies in the European Union: the race between feed-in tariffs and green certificates," Renewable Energy, Elsevier, vol. 31(1), pages 1-17.
    19. Li, Jinke & Liu, Guy & Shao, Jing, 2020. "Understanding the ROC transfer payment in the renewable obligation with the recycling mechanism in the United Kingdom," Energy Economics, Elsevier, vol. 87(C).
    20. Dominique Finon, 2006. "The Social Efficiency Of Instruments For The Promotion Of Renewable Energies In The Liberalised Power Industry," Annals of Public and Cooperative Economics, Wiley Blackwell, vol. 77(3), pages 309-343, September.

    More about this item

    Keywords

    Renewable Energy Act; EEG levy;

    JEL classification:

    • Q28 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Renewable Resources and Conservation - - - Government Policy
    • L94 - Industrial Organization - - Industry Studies: Transportation and Utilities - - - Electric Utilities
    • H23 - Public Economics - - Taxation, Subsidies, and Revenue - - - Externalities; Redistributive Effects; Environmental Taxes and Subsidies
    • Q41 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Demand and Supply; Prices

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:hwwadp:358. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (ZBW - Leibniz Information Centre for Economics). General contact details of provider: http://edirc.repec.org/data/hwwaade.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.