IDEAS home Printed from https://ideas.repec.org/p/zbw/cauewp/201206.html
   My bibliography  Save this paper

Intra-daily volatility spillovers between the US and German stock markets

Author

Listed:
  • Golosnoy, Vasyl
  • Gribisch, Bastian
  • Liesenfeld, Roman

Abstract

Using a novel three-phase model based upon a conditional autoregressive Wishart (CAW) framework for the realized (co)variances of the US Dow Jones and the German stock index DAX, we analyze intra-daily volatility spillovers between the US and German stock markets. The proposed model explicitly accounts for three distinct intraday periods resulting from the non-synchronous and partially overlapping opening hours of the two markets. We find evidence of significant short-term volatility spillovers from one intraday period to the next within both markets ('heat-wave effects') as well as across the two markets ('meteor-shower effects'). Furthermore, we find that during the subprime crisis the general persistence of short-term volatility shocks is considerably higher and the spillovers effects between the US and the German stock markets are significantly larger than before the crisis, indicating substantial volatility contagion effects.

Suggested Citation

  • Golosnoy, Vasyl & Gribisch, Bastian & Liesenfeld, Roman, 2012. "Intra-daily volatility spillovers between the US and German stock markets," Economics Working Papers 2012-06, Christian-Albrechts-University of Kiel, Department of Economics.
  • Handle: RePEc:zbw:cauewp:201206
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/58264/1/716347318.pdf
    Download Restriction: no

    References listed on IDEAS

    as
    1. Robert F. Engle & Jose Gonzalo Rangel, 2008. "The Spline-GARCH Model for Low-Frequency Volatility and Its Global Macroeconomic Causes," Review of Financial Studies, Society for Financial Studies, vol. 21(3), pages 1187-1222, May.
    2. FrancisX. Diebold & Kamil Yilmaz, 2009. "Measuring Financial Asset Return and Volatility Spillovers, with Application to Global Equity Markets," Economic Journal, Royal Economic Society, vol. 119(534), pages 158-171, January.
    3. Engle, Robert F. & Kroner, Kenneth F., 1995. "Multivariate Simultaneous Generalized ARCH," Econometric Theory, Cambridge University Press, vol. 11(01), pages 122-150, February.
    4. Zhang, Lan & Mykland, Per A. & Ait-Sahalia, Yacine, 2005. "A Tale of Two Time Scales: Determining Integrated Volatility With Noisy High-Frequency Data," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 1394-1411, December.
    5. Robert F. Engle & Giampiero M. Gallo & Margherita Velucchi, 2012. "Volatility Spillovers in East Asian Financial Markets: A Mem-Based Approach," The Review of Economics and Statistics, MIT Press, vol. 94(1), pages 222-223, February.
    6. Sims, Christopher A, 1980. "Macroeconomics and Reality," Econometrica, Econometric Society, vol. 48(1), pages 1-48, January.
    7. Bekaert, Geert & Ehrmann, Michael & Fratzscher, Marcel & Mehl, Arnaud, 2011. "Global crises and equity market contagion," CEPR Discussion Papers 8438, C.E.P.R. Discussion Papers.
    8. Fulvio Corsi, 2009. "A Simple Approximate Long-Memory Model of Realized Volatility," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 7(2), pages 174-196, Spring.
    9. Golosnoy, Vasyl & Gribisch, Bastian & Liesenfeld, Roman, 2012. "The conditional autoregressive Wishart model for multivariate stock market volatility," Journal of Econometrics, Elsevier, vol. 167(1), pages 211-223.
    10. Thomas Dimpfl & Robert C. Jung, 2012. "Financial market spillovers around the globe," Applied Financial Economics, Taylor & Francis Journals, vol. 22(1), pages 45-57, January.
    11. Gallant, A Ronald & Rossi, Peter E & Tauchen, George, 1993. "Nonlinear Dynamic Structures," Econometrica, Econometric Society, vol. 61(4), pages 871-907, July.
    12. Hamao, Yasushi & Masulis, Ronald W & Ng, Victor, 1990. "Correlations in Price Changes and Volatility across International Stock Markets," Review of Financial Studies, Society for Financial Studies, vol. 3(2), pages 281-307.
    13. Jeffrey Racine, 2008. "Nonparametric econometrics: a primer (in Russian)," Quantile, Quantile, issue 4, pages 7-56, March.
    14. Bénédicte Vidaillet & V. D'Estaintot & P. Abécassis, 2005. "Introduction," Post-Print hal-00287137, HAL.
    15. Jon Wongswan, 2006. "Transmission of Information across International Equity Markets," Review of Financial Studies, Society for Financial Studies, vol. 19(4), pages 1157-1189.
    16. Chiang, Min-Hsien & Wang, Li-Min, 2011. "Volatility contagion: A range-based volatility approach," Journal of Econometrics, Elsevier, vol. 165(2), pages 175-189.
    17. Kyle, Albert S, 1985. "Continuous Auctions and Insider Trading," Econometrica, Econometric Society, vol. 53(6), pages 1315-1335, November.
    18. BAUWENS, Luc & HAFNER, Christian & LAURENT, Sébastien, 2011. "Volatility models," CORE Discussion Papers 2011058, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    19. Michael Melvin & Bettina Peiers Melvin, 2003. "The Global Transmission of Volatility in the Foreign Exchange Market," The Review of Economics and Statistics, MIT Press, vol. 85(3), pages 670-679, August.
    20. Engle, Robert F & Ito, Takatoshi & Lin, Wen-Ling, 1990. "Meteor Showers or Heat Waves? Heteroskedastic Intra-daily Volatility in the Foreign Exchange Market," Econometrica, Econometric Society, vol. 58(3), pages 525-542, May.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    Conditional autoregressive Wishart model; Impulse response analysis; Observationdriven models; Realized covariance matrix; Subprime crisis;

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics
    • G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:cauewp:201206. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (ZBW - German National Library of Economics). General contact details of provider: http://edirc.repec.org/data/vakiede.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.