IDEAS home Printed from https://ideas.repec.org/p/zbw/bubdps/315494.html
   My bibliography  Save this paper

Revisions in concurrent seasonal adjustments of daily and weekly economic time series

Author

Listed:
  • Webel, Karsten

Abstract

The COVID-19 outbreak in 2020 has fostered in many countries the development of new weekly economic indices for the timely tracking of pandemic-related turmoils and other forms of rapid economic changes. Such indices often utilise information from daily and weekly economic time series that normally exhibit complex forms of seasonal behaviour. The latter dynamics were initially removed with ad hoc or experimental methods due to the urgent need of instant results and hence the lack of time for inventing and approving more sophisticated alternatives. This, never- theless, has in turn inspired recent developments of seasonal adjustment methods tailored to the specifics of infra-monthly time series. Although sound theoretical descriptions of these tailored methods are already available, their performance has not been evaluated empirically in great detail so far. To fill this gap, we consider real-time data vintages of several infra-monthly economic time series for Germany and analyse the cross-vintage stability of holiday-related deterministic pretreatment effects as well as the revisions in various concurrent signal estimates obtained with experimental STL-based and selected elaborate methods, such as the extended ARIMA model-based and X-11 approaches. Our main findings are that the tai- lored methods tend to outperform the experimental ones in terms of computational speed, that the considered pretreatment routines yield generally stable parameter estimates across data vintages, and that the extended ARIMA model-based approach generates the smallest and least volatile revisions in many cases.

Suggested Citation

  • Webel, Karsten, 2025. "Revisions in concurrent seasonal adjustments of daily and weekly economic time series," Discussion Papers 08/2025, Deutsche Bundesbank.
  • Handle: RePEc:zbw:bubdps:315494
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/315494/1/1923190075.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Livio Fenga, 2020. "Filtering and prediction of noisy and unstable signals: The case of Google Trends data," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(2), pages 281-295, March.
    2. Tommaso Proietti & Alessandra Luati, 2008. "Real Time Estimation in Local Polynomial Regression, with Application to Trend-Cycle Analysis," CEIS Research Paper 112, Tor Vergata University, CEIS, revised 14 Jul 2008.
    3. Dagum, Estela Bee & Laniel, Normand, 1987. "Revisions of Trend-Cycle Estimators of Moving Average Seasonal Adjustment Methods," Journal of Business & Economic Statistics, American Statistical Association, vol. 5(2), pages 177-189, April.
    4. Eduardo Cebrián & Josep Domenech, 2023. "Is Google Trends a quality data source?," Applied Economics Letters, Taylor & Francis Journals, vol. 30(6), pages 811-815, March.
    5. Christophe Planas & Raoul Depoutot, 2002. "Controlling Revisions in Arima‐Model‐Based Seasonal Adjustment," Journal of Time Series Analysis, Wiley Blackwell, vol. 23(2), pages 193-213, March.
    6. Pierce, David A., 1980. "Data revisions with moving average seasonal adjustment procedures," Journal of Econometrics, Elsevier, vol. 14(1), pages 95-114, September.
    7. Proietti, Tommaso & Pedregal, Diego J., 2023. "Seasonality in High Frequency Time Series," Econometrics and Statistics, Elsevier, vol. 27(C), pages 62-82.
    8. Daniel Ollech & Deutsche Bundesbank, 2023. "Economic analysis using higher-frequency time series: challenges for seasonal adjustment," Empirical Economics, Springer, vol. 64(3), pages 1375-1398, March.
    9. Pierce, David A., 1981. "Sources of error in economic time series," Journal of Econometrics, Elsevier, vol. 17(3), pages 305-321, December.
    10. Dagum, Estela Bee & Morry, Marietta, 1984. "Basic Issues on the Seasonal Adjustment of the Canadian Consumer Price Index," Journal of Business & Economic Statistics, American Statistical Association, vol. 2(3), pages 250-259, July.
    11. McKenzie, Sandra K, 1984. "Concurrent Seasonal Adjustment with Census X-11," Journal of Business & Economic Statistics, American Statistical Association, vol. 2(3), pages 235-249, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pfeffermann, Danny & Morry, Marietta & Wong, Paul, 1995. "Estimation of the variances of X-11 ARIMA seasonally adjusted estimators for a multiplicative decomposition and heteroscedastic variances," International Journal of Forecasting, Elsevier, vol. 11(2), pages 271-283, June.
    2. Christoffersen, Peter & Ghysels, Eric & Swanson, Norman R., 2002. "Let's get "real" about using economic data," Journal of Empirical Finance, Elsevier, vol. 9(3), pages 343-360, August.
    3. Dagum, Estela Bee, 2010. "Business Cycles and Current Economic Analysis/Los ciclos económicos y el análisis económico actual," Estudios de Economia Aplicada, Estudios de Economia Aplicada, vol. 28, pages 577-594, Diciembre.
    4. Cebrián, Eduardo & Domenech, Josep, 2024. "Addressing Google Trends inconsistencies," Technological Forecasting and Social Change, Elsevier, vol. 202(C).
    5. S. Boragan Aruoba & Frank Schorfheide, 2011. "Sticky Prices versus Monetary Frictions: An Estimation of Policy Trade-Offs," American Economic Journal: Macroeconomics, American Economic Association, vol. 3(1), pages 60-90, January.
    6. Kirchner, Robert, 1999. "Auswirkungen des neuen Saisonbereinigungsverfahrens Census X-12-ARIMA auf die aktuelle Wirtschaftsanalyse in Deutschland," Discussion Paper Series 1: Economic Studies 1999,07, Deutsche Bundesbank.
    7. Viv B. Hall & Peter Thomson, 2021. "Does Hamilton’s OLS Regression Provide a “better alternative” to the Hodrick-Prescott Filter? A New Zealand Business Cycle Perspective," Journal of Business Cycle Research, Springer;Centre for International Research on Economic Tendency Surveys (CIRET), vol. 17(2), pages 151-183, November.
    8. Proietti, Tommaso & Luati, Alessandra, 2009. "Low-Pass Filter Design using Locally Weighted Polynomial Regression and Discrete Prolate Spheroidal Sequences," MPRA Paper 15510, University Library of Munich, Germany.
    9. Marlon Fritz & Thomas Gries & Yuanhua Feng, 2019. "Growth Trends and Systematic Patterns of Booms and Busts‐Testing 200 Years of Business Cycle Dynamics," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 81(1), pages 62-78, February.
    10. Dirk Lindebaum & Christine Moser & Gazi Islam, 2024. "Big Data, Proxies, Algorithmic Decision‐Making and the Future of Management Theory," Journal of Management Studies, Wiley Blackwell, vol. 61(6), pages 2724-2747, September.
    11. William R. Bell & Donald E. K. Martin, 2004. "Computation of asymmetric signal extraction filters and mean squared error for ARIMA component models," Journal of Time Series Analysis, Wiley Blackwell, vol. 25(4), pages 603-623, July.
    12. Guy Mélard, 2016. "On some remarks about SEATS signal extraction," SERIEs: Journal of the Spanish Economic Association, Springer;Spanish Economic Association, vol. 7(1), pages 53-98, March.
    13. Barend Abeln & Jan P. A. M. Jacobs, 2023. "Seasonal Adjustment of Daily Data with CAMPLET," SpringerBriefs in Economics, in: Seasonal Adjustment Without Revisions, chapter 0, pages 63-78, Springer.
    14. Maravall, Agustin, 2006. "An application of the TRAMO-SEATS automatic procedure; direct versus indirect adjustment," Computational Statistics & Data Analysis, Elsevier, vol. 50(9), pages 2167-2190, May.
    15. Barend Abeln & Jan P. A. M. Jacobs, 2023. "COVID-19 and Seasonal Adjustment," SpringerBriefs in Economics, in: Seasonal Adjustment Without Revisions, chapter 0, pages 53-61, Springer.
    16. Tina Kalayil & Somya Tyagi & Mahfuza Khatun & Sikandar Siddiqui, 2019. "A Risk-Sensitive Momentum Approach To Stock Selection," Economic Annals, Faculty of Economics and Business, University of Belgrade, vol. 64(220), pages 61-84, January –.
    17. Maravall, Agustin & Planas, Christophe, 1999. "Estimation error and the specification of unobserved component models," Journal of Econometrics, Elsevier, vol. 92(2), pages 325-353, October.
    18. João Valle e Azevedo, 2007. "A Multivariate Band-Pass Filter," Working Papers w200717, Banco de Portugal, Economics and Research Department.
    19. Croushore, Dean & Stark, Tom, 2001. "A real-time data set for macroeconomists," Journal of Econometrics, Elsevier, vol. 105(1), pages 111-130, November.
    20. Robert Lehmann & Sascha Möhrle, 2024. "Forecasting regional industrial production with novel high‐frequency electricity consumption data," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(6), pages 1918-1935, September.

    More about this item

    Keywords

    extended ARIMA model-based approach; extended X-11 approach; Google trends; JDemetra+; real-time analysis; signal extraction; stability analysis; STL approach;
    All these keywords.

    JEL classification:

    • C01 - Mathematical and Quantitative Methods - - General - - - Econometrics
    • C02 - Mathematical and Quantitative Methods - - General - - - Mathematical Economics
    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C40 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - General
    • C50 - Mathematical and Quantitative Methods - - Econometric Modeling - - - General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:bubdps:315494. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/dbbgvde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.