IDEAS home Printed from https://ideas.repec.org/p/bde/wpaper/9608.html
   My bibliography  Save this paper

Estimation Error and the Specification of Unobserved Component Models

Author

Listed:
  • Agustín Maravall
  • Cristophe Planas

Abstract

The paper deals with the problem of identifying stochastic unobserved two-component models, as in seasonal adjustment or trend-cycle decompositions. Solutions based on the properties of the unobserved component estimation error are considered, and analytical expressions for the variances and covariances of the different types of estimation errors (errors in the final, preliminary, and concurrent estimator and in the forecast) are obtained for any admissible decomposition.

Suggested Citation

  • Agustín Maravall & Cristophe Planas, 1996. "Estimation Error and the Specification of Unobserved Component Models," Working Papers 9608, Banco de España;Working Papers Homepage.
  • Handle: RePEc:bde:wpaper:9608
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Maravall, Agustin & Mathis, Alexandre, 1994. "Encompassing univariate models in multivariate time series : A case study," Journal of Econometrics, Elsevier, vol. 61(2), pages 197-233, April.
    2. Burridge, Peter & Wallis, Kenneth F, 1984. "Calculating the Variance of Seasonally Adjusted Series," The Warwick Economics Research Paper Series (TWERPS) 251, University of Warwick, Department of Economics.
    3. Robert F. Engle, 1979. "Estimating Structural Models of Seasonality," NBER Chapters,in: Seasonal Analysis of Economic Time Series, pages 281-308 National Bureau of Economic Research, Inc.
    4. Pierce, David A., 1980. "Data revisions with moving average seasonal adjustment procedures," Journal of Econometrics, Elsevier, vol. 14(1), pages 95-114, September.
    5. George E. P. Box & Steven Hillmer & George C. Tiao, 1979. "Analysis and Modeling of Seasonal Time Series," NBER Chapters,in: Seasonal Analysis of Economic Time Series, pages 309-346 National Bureau of Economic Research, Inc.
    6. David A. Pierce, 1978. "Seasonal adjustment when both deterministic and stochastic seasonality are present," Special Studies Papers 107, Board of Governors of the Federal Reserve System (U.S.).
    7. Bell, William R & Hillmer, Steven C, 1984. "Issues Involved with the Seasonal Adjustment of Economic Time Series," Journal of Business & Economic Statistics, American Statistical Association, vol. 2(4), pages 291-320, October.
    8. Stock, James H & Watson, Mark W, 1988. "Variable Trends in Economic Time Series," Journal of Economic Perspectives, American Economic Association, vol. 2(3), pages 147-174, Summer.
    9. Agustín Maravall, 1996. "Unobserved Components in Economic Time Series," Working Papers 9609, Banco de España;Working Papers Homepage.
    10. Hillmer, Steven C, 1985. "Measures of Variability for Model-based Seasonal Adjustment Procedures," Journal of Business & Economic Statistics, American Statistical Association, vol. 3(1), pages 60-68, January.
    11. David A. Pierce, 1978. "Seasonal Adjustment When Both Deterministic and Stochastic Seasonality Are Present," NBER Chapters,in: Seasonal Analysis of Economic Time Series, pages 242-280 National Bureau of Economic Research, Inc.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Maravall, Agustin, 2006. "An application of the TRAMO-SEATS automatic procedure; direct versus indirect adjustment," Computational Statistics & Data Analysis, Elsevier, vol. 50(9), pages 2167-2190, May.
    2. Laurent Ferrara & Dominique Guégan, 2006. "Detection of the Industrial Business Cycle using SETAR Models," Journal of Business Cycle Measurement and Analysis, OECD Publishing, Centre for International Research on Economic Tendency Surveys, vol. 2005(3), pages 353-371.
    3. Rossi, Alessandro & Gallo, Giampiero M., 2006. "Volatility estimation via hidden Markov models," Journal of Empirical Finance, Elsevier, vol. 13(2), pages 203-230, March.
    4. Norman Loayza & Klaus Schmidt-Hebbel & Luis Servén, 2000. "What Drives Private Saving Across the World?," The Review of Economics and Statistics, MIT Press, vol. 82(2), pages 165-181, May.
    5. Gianluca Caporello & Agustín Maravall & Fernando J. Sánchez, 2001. "Program TSW Reference Manual," Working Papers 0112, Banco de España;Working Papers Homepage.
    6. Loayza, Norman & Schmidt-Hebbel, Klaus & Serven, Luis, 2000. "What drives private saving around the world?," Policy Research Working Paper Series 2309, The World Bank.
    7. Kaiser, Regina & Maravall, Agustín, 2000. "Notes on time serie analysis, ARIMA models and signal extraction," DES - Working Papers. Statistics and Econometrics. WS 10058, Universidad Carlos III de Madrid. Departamento de Estadística.
    8. Daragh Clancy, 2013. "Output Gap Estimation Uncertainty: Extracting the TFP Cycle Using an Aggregated PMI Series," The Economic and Social Review, Economic and Social Studies, vol. 44(1), pages 1-18.
    9. Guy Mélard, 2016. "On some remarks about SEATS signal extraction," SERIEs: Journal of the Spanish Economic Association, Springer;Spanish Economic Association, vol. 7(1), pages 53-98, March.
    10. Regina Kaiser & Agustín Maravall, 2000. "Notes on Time Series Analysis, ARIMA Models and Signal Extraction," Working Papers 0012, Banco de España;Working Papers Homepage.
    11. Kaloyan Ganev, 2004. "Statistical estimates of the deviations from the macroeconomic potential. An application to the economy of Bulgaria," Macroeconomics 0409010, EconWPA.
    12. Andrés Bujosa Brun & Marcos Bujosa Brun & Antonio García-Ferrer, 2013. "Mathematical framework for pseudo-spectra of linear stochastic difference equations," Documentos de Trabajo del ICAE 2013-13, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico, revised May 2015.

    More about this item

    Keywords

    EVALUATION; ECONOMETRICS; MODELS;

    JEL classification:

    • C10 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - General
    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C19 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Other

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bde:wpaper:9608. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (María Beiro. Electronic Dissemination of Information Unit. Research Department. Banco de España). General contact details of provider: http://www.bde.es/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.