IDEAS home Printed from https://ideas.repec.org/a/bpj/jtsmet/v2y2010i1n4.html

Signal Extraction Revision Variances as a Goodness-of-Fit Measure

Author

Listed:
  • McElroy Tucker

    (U.S. Census Bureau)

  • Wildi Marc

    (Institute of Data Analysis and Process Design)

Abstract

Typically, model misspecification is addressed by statistics relying on model-residuals, i.e., on one-step ahead forecasting errors. In practice, however, users are often also interested in problems involving multi-step ahead forecasting performances, which are not explicitly addressed by traditional diagnostics. In this article, we consider the topic of misspecification from the perspective of signal extraction. More precisely, we emphasize the connection between models and real-time (concurrent) filter performances by analyzing revision errors instead of one-step ahead forecasting errors. In applications, real-time filters are important for computing trends, for performing seasonal adjustment or for inferring turning-points towards the current boundary of time series. Since revision errors of real-time filters generally rely on particular linear combinations of one- and multi-step ahead forecasts, we here address a generalization of traditional diagnostics. Formally, a hypothesis testing paradigm for the empirical revision measure is developed through theoretical calculations of the asymptotic distribution under the null hypothesis, and the method is assessed through real data studies as well as simulations. In particular, we analyze the effect of model misspecification with respect to unit roots, which are likely to determine multi-step ahead forecasting performances. We also show that this framework can be extended to general forecasting problems by defining suitable artificial signals.

Suggested Citation

  • McElroy Tucker & Wildi Marc, 2010. "Signal Extraction Revision Variances as a Goodness-of-Fit Measure," Journal of Time Series Econometrics, De Gruyter, vol. 2(1), pages 1-32, June.
  • Handle: RePEc:bpj:jtsmet:v:2:y:2010:i:1:n:4
    DOI: 10.2202/1941-1928.1012
    as

    Download full text from publisher

    File URL: https://doi.org/10.2202/1941-1928.1012
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    File URL: https://libkey.io/10.2202/1941-1928.1012?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Pierce, David A., 1980. "Data revisions with moving average seasonal adjustment procedures," Journal of Econometrics, Elsevier, vol. 14(1), pages 95-114, September.
    2. Marc Wildi & Bernd Schips, 2004. "Signal Extraction: How (In)efficient Are Model-Based Approaches? An Empirical Study Based on TRAMO/SEATS and Census X-12-ARIMA," KOF Working papers 04-96, KOF Swiss Economic Institute, ETH Zurich.
    3. McElroy, Tucker, 2008. "Matrix Formulas For Nonstationary Arima Signal Extraction," Econometric Theory, Cambridge University Press, vol. 24(4), pages 988-1009, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wildi Marc & McElroy Tucker, 2016. "Optimal Real-Time Filters for Linear Prediction Problems," Journal of Time Series Econometrics, De Gruyter, vol. 8(2), pages 155-192, July.
    2. Agustín Maravall Herrero & Domingo Pérez Cañete, 2011. "Applying and interpreting model-based seasonal adjustment. The euro-area industrial production series," Working Papers 1116, Banco de España.
    3. McElroy, Tucker S. & Wildi, Marc, 2020. "The Multivariate Linear Prediction Problem: Model-Based and Direct Filtering Solutions," Econometrics and Statistics, Elsevier, vol. 14(C), pages 112-130.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guy Mélard, 2016. "On some remarks about SEATS signal extraction," SERIEs: Journal of the Spanish Economic Association, Springer;Spanish Economic Association, vol. 7(1), pages 53-98, March.
    2. McElroy, Tucker S. & Wildi, Marc, 2020. "The Multivariate Linear Prediction Problem: Model-Based and Direct Filtering Solutions," Econometrics and Statistics, Elsevier, vol. 14(C), pages 112-130.
    3. McElroy, Tucker & Wildi, Marc, 2013. "Multi-step-ahead estimation of time series models," International Journal of Forecasting, Elsevier, vol. 29(3), pages 378-394.
    4. Regina Kaiser & Agustín Maravall, 2002. "A Complete Model-Based Interpretation of the Hodrick-Prescott Filter: Spuriousness Reconsidered," Working Papers 0208, Banco de España.
    5. Agustín Maravall Herrero & Domingo Pérez Cañete, 2011. "Applying and interpreting model-based seasonal adjustment. The euro-area industrial production series," Working Papers 1116, Banco de España.
    6. Tucker McElroy & Thomas Trimbur, 2015. "Signal Extraction for Non-Stationary Multivariate Time Series with Illustrations for Trend Inflation," Journal of Time Series Analysis, Wiley Blackwell, vol. 36(2), pages 209-227, March.
    7. D. Stephen G. Pollock & Emi Mise, 2022. "A Wiener–Kolmogorov Filter for Seasonal Adjustment and the Cholesky Decomposition of a Toeplitz Matrix," Computational Economics, Springer;Society for Computational Economics, vol. 59(3), pages 913-933, March.
    8. David F. Findley & Demetra P. Lytras & Agustin Maravall, 2016. "Illuminating ARIMA model-based seasonal adjustment with three fundamental seasonal models," SERIEs: Journal of the Spanish Economic Association, Springer;Spanish Economic Association, vol. 7(1), pages 11-52, March.
    9. S. Boragan Aruoba & Frank Schorfheide, 2011. "Sticky Prices versus Monetary Frictions: An Estimation of Policy Trade-Offs," American Economic Journal: Macroeconomics, American Economic Association, vol. 3(1), pages 60-90, January.
    10. Kirchner, Robert, 1999. "Auswirkungen des neuen Saisonbereinigungsverfahrens Census X-12-ARIMA auf die aktuelle Wirtschaftsanalyse in Deutschland," Discussion Paper Series 1: Economic Studies 1999,07, Deutsche Bundesbank.
    11. Viv B. Hall & Peter Thomson, 2021. "Does Hamilton’s OLS Regression Provide a “better alternative” to the Hodrick-Prescott Filter? A New Zealand Business Cycle Perspective," Journal of Business Cycle Research, Springer;Centre for International Research on Economic Tendency Surveys (CIRET), vol. 17(2), pages 151-183, November.
    12. Dias, Maria Helena Ambrosio & Dias, Joilson, 2010. "Measuring the Cyclical Component of a Time Series: a New Proposed Methodology," Brazilian Review of Econometrics, Sociedade Brasileira de Econometria - SBE, vol. 30(1), October.
    13. Andreas Blöchl & Gebhard Flaig, 2014. "The Hodrick-Prescott Filter with a Time-Varying Penalization Parameter. An Application for the Trend Estimation of Global Temperature," CESifo Working Paper Series 4577, CESifo.
    14. Webel, Karsten, 2025. "Revisions in concurrent seasonal adjustments of daily and weekly economic time series," Discussion Papers 08/2025, Deutsche Bundesbank.
    15. Flaig Gebhard, 2015. "Why We Should Use High Values for the Smoothing Parameter of the Hodrick-Prescott Filter," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 235(6), pages 518-538, December.
    16. Andrle, Michal, 2012. "Understanding DSGE Filters in Forecasting and Policy Analysis," Dynare Working Papers 16, CEPREMAP.
    17. William R. Bell & Donald E. K. Martin, 2004. "Computation of asymmetric signal extraction filters and mean squared error for ARIMA component models," Journal of Time Series Analysis, Wiley Blackwell, vol. 25(4), pages 603-623, July.
    18. Webel, Karsten, 2022. "A review of some recent developments in the modelling and seasonal adjustment of infra-monthly time series," Discussion Papers 31/2022, Deutsche Bundesbank.
    19. Irene Nandutu & Marcellin Atemkeng & Nokubonga Mgqatsa & Sakayo Toadoum Sari & Patrice Okouma & Rockefeller Rockefeller & Theophilus Ansah-Narh & Jean Louis Ebongue Kedieng Fendji & Franklin Tchakount, 2022. "Error Correction Based Deep Neural Networks for Modeling and Predicting South African Wildlife–Vehicle Collision Data," Mathematics, MDPI, vol. 10(21), pages 1-31, October.
    20. João Valle e Azevedo, 2007. "A Multivariate Band-Pass Filter," Working Papers w200717, Banco de Portugal, Economics and Research Department.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:jtsmet:v:2:y:2010:i:1:n:4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyterbrill.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.