IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this article

Computation of asymmetric signal extraction filters and mean squared error for ARIMA component models

Listed author(s):
  • William R. Bell
  • Donald E. K. Martin
Registered author(s):

    Standard signal extraction results for both stationary and nonstationary time series are expressed as linear filters applied to the observed series. Computation of the filter weights, and of the corresponding frequency response function, is relevant for studying properties of the filter and of the resulting signal extraction estimates. Methods for doing such computations for symmetric, doubly infinite filters are well established. This study develops an algorithm for computing filter weights for asymmetric, semi-infinite signal extraction filters, including the important case of the concurrent filter (for signal extraction at the current time point). The setting is where the time series components being estimated follow autoregressive integrated moving-average (ARIMA) models. The algorithm provides expressions for the asymmetric signal extraction filters as rational polynomial functions of the backshift operator. The filter weights are then readily generated by simple expansion of these expressions, and the corresponding frequency response function is directly evaluated. Recursive expressions are also developed that relate the weights for filters that use successively increasing amounts of data. The results for the filter weights are then used to develop methods for computing mean squared error results for the asymmetric signal extraction estimates. Copyright 2004 Blackwell Publishing Ltd.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL:
    File Function: link to full text
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by Wiley Blackwell in its journal Journal of Time Series Analysis.

    Volume (Year): 25 (2004)
    Issue (Month): 4 (July)
    Pages: 603-623

    in new window

    Handle: RePEc:bla:jtsera:v:25:y:2004:i:4:p:603-623
    Contact details of provider: Web page:

    Order Information: Web:

    No references listed on IDEAS
    You can help add them by filling out this form.

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:bla:jtsera:v:25:y:2004:i:4:p:603-623. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Wiley-Blackwell Digital Licensing)

    or (Christopher F. Baum)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.