IDEAS home Printed from https://ideas.repec.org/a/taf/japsta/v34y2007i8p963-972.html
   My bibliography  Save this article

A Note on Trend Decomposition: The 'Classical' Approach Revisited with an Application to Surface Temperature Trends

Author

Listed:
  • Terence Mills

Abstract

This note reconsiders the 'classical' approach to trend estimation and presents a modern treatment of this technique that enables trend filters which incorporate end-effects to be constructed easily and efficiently. The approach is illustrated by estimating recent Northern Hemispheric temperature trends. In so doing, it shows how classical trend models may be selected in empirical applications and indicates how this choice determines the properties of the latest trend estimates.

Suggested Citation

  • Terence Mills, 2007. "A Note on Trend Decomposition: The 'Classical' Approach Revisited with an Application to Surface Temperature Trends," Journal of Applied Statistics, Taylor & Francis Journals, vol. 34(8), pages 963-972.
  • Handle: RePEc:taf:japsta:v:34:y:2007:i:8:p:963-972
    DOI: 10.1080/02664760701590418
    as

    Download full text from publisher

    File URL: http://www.tandfonline.com/doi/abs/10.1080/02664760701590418
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/02664760701590418?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Koopman, Siem Jan & Harvey, Andrew, 2003. "Computing observation weights for signal extraction and filtering," Journal of Economic Dynamics and Control, Elsevier, vol. 27(7), pages 1317-1333, May.
    2. Findley, David F, et al, 1998. "New Capabilities and Methods of the X-12-ARIMA Seasonal-Adjustment Program: Reply," Journal of Business & Economic Statistics, American Statistical Association, vol. 16(2), pages 169-177, April.
    3. William R. Bell & Donald E. K. Martin, 2004. "Computation of asymmetric signal extraction filters and mean squared error for ARIMA component models," Journal of Time Series Analysis, Wiley Blackwell, vol. 25(4), pages 603-623, July.
    4. Frederick R. Macaulay, 1931. "The Smoothing of Economic Time Series, Curve Fitting and Graduation," NBER Chapters, in: The Smoothing of Time Series, pages 31-42, National Bureau of Economic Research, Inc.
    5. Frederick R. Macaulay, 1931. "The Smoothing of Time Series," NBER Books, National Bureau of Economic Research, Inc, number maca31-1.
    6. Findley, David F, et al, 1998. "New Capabilities and Methods of the X-12-ARIMA Seasonal-Adjustment Program," Journal of Business & Economic Statistics, American Statistical Association, vol. 16(2), pages 127-152, April.
    7. Quenneville, Benoit & Ladiray, Dominique & Lefrancois, Bernard, 2003. "A note on Musgrave asymmetrical trend-cycle filters," International Journal of Forecasting, Elsevier, vol. 19(4), pages 727-734.
    8. Frederick R. Macaulay, 1931. "Appendices to "The Smoothing of Time Series"," NBER Chapters, in: The Smoothing of Time Series, pages 118-169, National Bureau of Economic Research, Inc.
    9. Pollock, D. S. G., 2000. "Trend estimation and de-trending via rational square-wave filters," Journal of Econometrics, Elsevier, vol. 99(2), pages 317-334, December.
    10. Frederick R. Macaulay, 1931. "Introduction to "The Smoothing of Time Series"," NBER Chapters, in: The Smoothing of Time Series, pages 17-30, National Bureau of Economic Research, Inc.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Viv B. Hall & Peter Thomson, 2021. "Does Hamilton’s OLS Regression Provide a “better alternative” to the Hodrick-Prescott Filter? A New Zealand Business Cycle Perspective," Journal of Business Cycle Research, Springer;Centre for International Research on Economic Tendency Surveys (CIRET), vol. 17(2), pages 151-183, November.
    2. Olivares, Kin G. & Challu, Cristian & Marcjasz, Grzegorz & Weron, Rafał & Dubrawski, Artur, 2023. "Neural basis expansion analysis with exogenous variables: Forecasting electricity prices with NBEATSx," International Journal of Forecasting, Elsevier, vol. 39(2), pages 884-900.
    3. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    4. Wang, Shuai & Yu, Lean & Tang, Ling & Wang, Shouyang, 2011. "A novel seasonal decomposition based least squares support vector regression ensemble learning approach for hydropower consumption forecasting in China," Energy, Elsevier, vol. 36(11), pages 6542-6554.
    5. Viv B Hall & Peter Thomson, 2020. "Does Hamilton’s OLS regression provide a “better alternative†to the Hodrick-Prescott filter? A New Zealand business cycle perspective," CAMA Working Papers 2020-71, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    6. Alexander Dokumentov & Rob J. Hyndman, 2022. "STR: Seasonal-Trend Decomposition Using Regression," INFORMS Joural on Data Science, INFORMS, vol. 1(1), pages 50-62, April.
    7. Shouvik Chakraborty, 2012. "Is Export Expansion of Manufactured Goods an Escape Route from Terms of Trade Deterioration of Developing Countries?," Journal of South Asian Development, , vol. 7(2), pages 81-108, October.
    8. Ingel, Anti & Shahroudi, Novin & Kängsepp, Markus & Tättar, Andre & Komisarenko, Viacheslav & Kull, Meelis, 2020. "Correlated daily time series and forecasting in the M4 competition," International Journal of Forecasting, Elsevier, vol. 36(1), pages 121-128.
    9. Hall, Viv & Thomson, Peter & McKelvie, Stuart, 2015. "On trend robustness and end-point issues for New Zealand’s stylised business cycle facts," Working Paper Series 18867, Victoria University of Wellington, School of Economics and Finance.
    10. Dagum Estela Bee & Luati Alessandra, 2004. "Relationship between Local and Global Nonparametric Estimators Measures of Fitting and Smoothing," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 8(2), pages 1-18, May.
    11. Alessandra Luati & Tommaso Proietti, 2011. "On the equivalence of the weighted least squares and the generalised least squares estimators, with applications to kernel smoothing," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 63(4), pages 851-871, August.
    12. Hall, Viv & Thomson, Peter & McKelvie, Stuart, 2015. "On trend robustness and end-point issues for New Zealand’s stylised business cycle facts," Working Paper Series 3761, Victoria University of Wellington, School of Economics and Finance.
    13. Viv B. Hall & Peter Thomson & Stuart McKelvie, 2017. "On the robustness of stylised business cycle facts for contemporary New Zealand," New Zealand Economic Papers, Taylor & Francis Journals, vol. 51(3), pages 193-216, September.
    14. Thornton, Michael A., 2013. "Removing seasonality under a changing regime: Filtering new car sales," Computational Statistics & Data Analysis, Elsevier, vol. 58(C), pages 4-14.
    15. Zhao, Shan & Wei, G. W., 2003. "Jump process for the trend estimation of time series," Computational Statistics & Data Analysis, Elsevier, vol. 42(1-2), pages 219-241, February.
    16. Zarnowitz, Victor & Ozyildirim, Ataman, 2006. "Time series decomposition and measurement of business cycles, trends and growth cycles," Journal of Monetary Economics, Elsevier, vol. 53(7), pages 1717-1739, October.
    17. Pollock, D.S.G., 2006. "Econometric methods of signal extraction," Computational Statistics & Data Analysis, Elsevier, vol. 50(9), pages 2268-2292, May.
    18. Proietti, Tommaso, 2007. "Signal extraction and filtering by linear semiparametric methods," Computational Statistics & Data Analysis, Elsevier, vol. 52(2), pages 935-958, October.
    19. Hackl, Peter & Westlund, Anders H., 1996. "Demand for international telecommunication time-varying price elasticity," Journal of Econometrics, Elsevier, vol. 70(1), pages 243-260, January.
    20. De Gooijer, Jan G. & Hyndman, Rob J., 2006. "25 years of time series forecasting," International Journal of Forecasting, Elsevier, vol. 22(3), pages 443-473.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:japsta:v:34:y:2007:i:8:p:963-972. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/CJAS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.