IDEAS home Printed from https://ideas.repec.org/a/bla/obuest/v81y2019i1p62-78.html
   My bibliography  Save this article

Growth Trends and Systematic Patterns of Booms and Busts‐Testing 200 Years of Business Cycle Dynamics

Author

Listed:
  • Marlon Fritz
  • Thomas Gries
  • Yuanhua Feng

Abstract

We study the dynamic pattern of business cycles using US GDP data between 1790 and 2015. To address difficulties in trend and cycle decomposition, we introduce a semiparametric estimation approach with an iterative plug‐in (IPI) algorithm for endogenous bandwidth selection. This algorithm identifies continuously moving growth trends with trend‐supporting growth periods. A simulation study demonstrates the value‐added of our trend identification. Afterwards, nonlinear SETAR models are fitted parametrically. Further, we test the trend using a recently developed test and the estimated SETAR models against their linear alternatives. The results indicate asymmetric characteristics during booms and busts.

Suggested Citation

  • Marlon Fritz & Thomas Gries & Yuanhua Feng, 2019. "Growth Trends and Systematic Patterns of Booms and Busts‐Testing 200 Years of Business Cycle Dynamics," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 81(1), pages 62-78, February.
  • Handle: RePEc:bla:obuest:v:81:y:2019:i:1:p:62-78
    DOI: 10.1111/obes.12267
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/obes.12267
    Download Restriction: no

    File URL: https://libkey.io/10.1111/obes.12267?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Perron, Pierre & Wada, Tatsuma, 2009. "Let's take a break: Trends and cycles in US real GDP," Journal of Monetary Economics, Elsevier, vol. 56(6), pages 749-765, September.
    2. Laura Mayoral, 2006. "Further Evidence on the Statistical Properties of Real GNP," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 68(s1), pages 901-920, December.
    3. Terasvirta, T & Anderson, H M, 1992. "Characterizing Nonlinearities in Business Cycles Using Smooth Transition Autoregressive Models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 7(S), pages 119-136, Suppl. De.
    4. Beaudry, Paul & Koop, Gary, 1993. "Do recessions permanently change output?," Journal of Monetary Economics, Elsevier, vol. 31(2), pages 149-163, April.
    5. Potter, Simon M, 1995. "A Nonlinear Approach to US GNP," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 10(2), pages 109-125, April-Jun.
    6. Zarnowitz, Victor & Ozyildirim, Ataman, 2006. "Time series decomposition and measurement of business cycles, trends and growth cycles," Journal of Monetary Economics, Elsevier, vol. 53(7), pages 1717-1739, October.
    7. Tommaso Proietti & Alessandra Luati, 2008. "Real Time Estimation in Local Polynomial Regression, with Application to Trend-Cycle Analysis," CEIS Research Paper 112, Tor Vergata University, CEIS, revised 14 Jul 2008.
    8. Cochrane, John H, 1988. "How Big Is the Random Walk in GNP?," Journal of Political Economy, University of Chicago Press, vol. 96(5), pages 893-920, October.
    9. Sichel, Daniel E, 1994. "Inventories and the Three Phases of the Business Cycle," Journal of Business & Economic Statistics, American Statistical Association, vol. 12(3), pages 269-277, July.
    10. Òscar Jordà & Moritz Schularick & Alan M Taylor, 2011. "Financial Crises, Credit Booms, and External Imbalances: 140 Years of Lessons," IMF Economic Review, Palgrave Macmillan;International Monetary Fund, vol. 59(2), pages 340-378, June.
    11. Arthur F. Burns & Wesley C. Mitchell, 1946. "Measuring Business Cycles," NBER Books, National Bureau of Economic Research, Inc, number burn46-1, June.
    12. James Morley & Jeremy Piger, 2012. "The Asymmetric Business Cycle," The Review of Economics and Statistics, MIT Press, vol. 94(1), pages 208-221, February.
    13. Morten O. Ravn & Harald Uhlig, 2002. "On adjusting the Hodrick-Prescott filter for the frequency of observations," The Review of Economics and Statistics, MIT Press, vol. 84(2), pages 371-375.
    14. Hansen, Bruce E, 1996. "Inference When a Nuisance Parameter Is Not Identified under the Null Hypothesis," Econometrica, Econometric Society, vol. 64(2), pages 413-430, March.
    15. Jan Beran & Yuanhua Feng, 2002. "Local Polynomial Fitting with Long-Memory, Short-Memory and Antipersistent Errors," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 54(2), pages 291-311, June.
    16. Beveridge, Stephen & Nelson, Charles R., 1981. "A new approach to decomposition of economic time series into permanent and transitory components with particular attention to measurement of the `business cycle'," Journal of Monetary Economics, Elsevier, vol. 7(2), pages 151-174.
    17. James C. Morley & Charles R. Nelson & Eric Zivot, 2003. "Why Are the Beveridge-Nelson and Unobserved-Components Decompositions of GDP So Different?," The Review of Economics and Statistics, MIT Press, vol. 85(2), pages 235-243, May.
    18. Morley, James & Piger, Jeremy, 2008. "Trend/cycle decomposition of regime-switching processes," Journal of Econometrics, Elsevier, vol. 146(2), pages 220-226, October.
    19. Yuanhua Feng & Sarah Forstinger & Christian Peitz, 2013. "On the iterative plug-in algorithm for estimating diurnal patterns of financial trade durations," Working Papers CIE 66, Paderborn University, CIE Center for International Economics.
    20. Wesley Clair Mitchell, 1927. "Business Cycles: The Problem and Its Setting," NBER Books, National Bureau of Economic Research, Inc, number mitc27-1, June.
    21. Michael P. Clements & Hans-Martin Krolzig, 2004. "Can regime-switching models reproduce the business cycle features of US aggregate consumption, investment and output?," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 9(1), pages 1-14.
    22. Ramsey, James B & Rothman, Philip, 1996. "Time Irreversibility and Business Cycle Asymmetry," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 28(1), pages 1-21, February.
    23. Silva Lopes, Artur C. & Florin Zsurkis, Gabriel, 2015. "Revisiting non-linearities in business cycles around the world," MPRA Paper 65668, University Library of Munich, Germany.
    24. Nelson, Charles R. & Plosser, Charles I., 1982. "Trends and random walks in macroeconmic time series : Some evidence and implications," Journal of Monetary Economics, Elsevier, vol. 10(2), pages 139-162.
    25. Wesley Clair Mitchell, 1927. "Introductory pages to "Business Cycles: The Problem and Its Setting"," NBER Chapters, in: Business Cycles: The Problem and Its Setting, pages -23, National Bureau of Economic Research, Inc.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fritz, Marlon, 2019. "Steady state adjusting trends using a data-driven local polynomial regression," Economic Modelling, Elsevier, vol. 83(C), pages 312-325.
    2. Fritz, Marlon & Gries, Thomas & Feng, Yuanhua, 2019. "Secular stagnation? Is there statistical evidence of an unprecedented, systematic decline in growth?," Economics Letters, Elsevier, vol. 181(C), pages 47-50.
    3. Marlon Fritz, 2019. "Data-Driven Local Polynomial Trend Estimation for Economic Data - Steady State Adjusting Trends," Working Papers Dissertations 49, Paderborn University, Faculty of Business Administration and Economics.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gries Thomas & Fritz Marlon & Feng Yuanhua, 2017. "Slow Booms and Deep Busts: 160 Years of Business Cycles in Spain," Review of Economics, De Gruyter, vol. 68(2), pages 153-166, August.
    2. Sinclair Tara M, 2009. "Asymmetry in the Business Cycle: Friedman's Plucking Model with Correlated Innovations," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 14(1), pages 1-31, December.
    3. Ai Deng & Pierre Perron, 2006. "A comparison of alternative asymptotic frameworks to analyse a structural change in a linear time trend," Econometrics Journal, Royal Economic Society, vol. 9(3), pages 423-447, November.
    4. Perron, Pierre & Wada, Tatsuma, 2009. "Let's take a break: Trends and cycles in US real GDP," Journal of Monetary Economics, Elsevier, vol. 56(6), pages 749-765, September.
    5. Ángel Guillén & Gabriel Rodríguez, 2014. "Trend-cycle decomposition for Peruvian GDP: application of an alternative method," Latin American Economic Review, Springer;Centro de Investigaciòn y Docencia Económica (CIDE), vol. 23(1), pages 1-44, December.
    6. Kiani, Khurshid M., 2016. "On business cycle fluctuations in USA macroeconomic time series," Economic Modelling, Elsevier, vol. 53(C), pages 179-186.
    7. Dijk, Dick van & Franses, Philip Hans, 1999. "Modeling Multiple Regimes in the Business Cycle," Macroeconomic Dynamics, Cambridge University Press, vol. 3(3), pages 311-340, September.
    8. Fritz, Marlon, 2019. "Steady state adjusting trends using a data-driven local polynomial regression," Economic Modelling, Elsevier, vol. 83(C), pages 312-325.
    9. de Carvalho, Miguel & Rua, António, 2017. "Real-time nowcasting the US output gap: Singular spectrum analysis at work," International Journal of Forecasting, Elsevier, vol. 33(1), pages 185-198.
    10. Alejandro López-Vera & Andrés D. Pinchao-Rosero & Norberto Rodríguez-Niño, 2018. "Non-Linear Fiscal Multipliers for Public Expenditure and Tax Revenue in Colombia," Revista ESPE - Ensayos sobre Política Económica, Banco de la Republica de Colombia, vol. 36(85), pages 48-64, April.
    11. Günes Kamber & James Morley & Benjamin Wong, 2018. "Intuitive and Reliable Estimates of the Output Gap from a Beveridge-Nelson Filter," The Review of Economics and Statistics, MIT Press, vol. 100(3), pages 550-566, July.
    12. Enders, Walter & Siklos, Pierre L, 2001. "Cointegration and Threshold Adjustment," Journal of Business & Economic Statistics, American Statistical Association, vol. 19(2), pages 166-176, April.
    13. Kim, Chang-Jin, 2008. "Markov-switching and the Beveridge-Nelson decomposition: Has US output persistence changed since 1984?," Journal of Econometrics, Elsevier, vol. 146(2), pages 227-240, October.
    14. Luis Uzeda, 2016. "State Correlation and Forecasting: A Bayesian Approach Using Unobserved Components Models," ANU Working Papers in Economics and Econometrics 2016-632, Australian National University, College of Business and Economics, School of Economics.
    15. McKay, Alisdair & Reis, Ricardo, 2008. "The brevity and violence of contractions and expansions," Journal of Monetary Economics, Elsevier, vol. 55(4), pages 738-751, May.
    16. Marlon Fritz, 2019. "Data-Driven Local Polynomial Trend Estimation for Economic Data - Steady State Adjusting Trends," Working Papers Dissertations 49, Paderborn University, Faculty of Business Administration and Economics.
    17. Ahsan ul Haq Satti & Wasim Shahid Malik, 2017. "The Unreliability of Output-Gap Estimates in Real Time," The Pakistan Development Review, Pakistan Institute of Development Economics, vol. 56(3), pages 193-219.
    18. Banu Tanrıöver & Rahmi Yamak, 2015. "Business Cycle Asymmetry: Deepness and Steepness in Turkey," Romanian Economic Journal, Department of International Business and Economics from the Academy of Economic Studies Bucharest, vol. 18(58), pages 81-96, December.
    19. Enders, Walter & Ludlow, Jorge, 1998. "Estimating Time-Varying ARMA Models Using Fourier Coefficients," ISU General Staff Papers 199810010700001307, Iowa State University, Department of Economics.
    20. Angelia L. Grant & Joshua C.C. Chan, 2017. "A Bayesian Model Comparison for Trend‐Cycle Decompositions of Output," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 49(2-3), pages 525-552, March.

    More about this item

    JEL classification:

    • E32 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Business Fluctuations; Cycles
    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:obuest:v:81:y:2019:i:1:p:62-78. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: https://edirc.repec.org/data/sfeixuk.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/sfeixuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.