IDEAS home Printed from https://ideas.repec.org/p/yor/yorken/05-03.html
   My bibliography  Save this paper

The Available Information for Invariant Tests of a Unit Root

Author

Listed:
  • Patrick Marsh

Abstract

This paper considers the information available to invariant unit root tests at and near the unit root. Since all invariant tests will be functions of the maximal invariant, the Fisher information in this statistic will be the available information. The main finding of the paper is that the available information for all tests invariant to a linear trend is zero at the unit root. This result applies for any sample size, over a variety of distributions and correlation structures and is robust to the inclusion of any other deterministic component. In addition, an explicit bound upon the power of all invariant unit root tests is shown to depend solely upon the information. This bound is illustrated via comparison with the local-to-unity power envelope and a brief simulation study illustrates the impact that the requirements of invariance have on power.

Suggested Citation

  • Patrick Marsh, "undated". "The Available Information for Invariant Tests of a Unit Root," Discussion Papers 05/03, Department of Economics, University of York.
  • Handle: RePEc:yor:yorken:05/03
    as

    Download full text from publisher

    File URL: https://www.york.ac.uk/media/economics/documents/discussionpapers/2005/0503.pdf
    File Function: Main text
    Download Restriction: no

    References listed on IDEAS

    as
    1. Bunzel, Helle & Vogelsang, Timothy J., 2005. "Powerful Trend Function Tests That Are Robust to Strong Serial Correlation, With an Application to the Prebisch-Singer Hypothesis," Journal of Business & Economic Statistics, American Statistical Association, vol. 23, pages 381-394, October.
    2. Sargan, John Denis & Bhargava, Alok, 1983. "Testing Residuals from Least Squares Regression for Being Generated by the Gaussian Random Walk," Econometrica, Econometric Society, vol. 51(1), pages 153-174, January.
    3. Abadir, Karim M., 1993. "On the Asymptotic Power of Unit Root Tests," Econometric Theory, Cambridge University Press, vol. 9(02), pages 189-221, April.
    4. Giovanni Forchini & Patrick Marsh, "undated". "Exact Inference for the Unit Root Hypothesis," Discussion Papers 00/54, Department of Economics, University of York.
    5. Perron, Pierre & Rodriguez, Gabriel, 2003. "GLS detrending, efficient unit root tests and structural change," Journal of Econometrics, Elsevier, vol. 115(1), pages 1-27, July.
    6. DeJong, David N, et al, 1992. "Integration versus Trend Stationarity in Time Series," Econometrica, Econometric Society, vol. 60(2), pages 423-433, March.
    7. Leybourne, Stephen J. & C. Mills, Terence & Newbold, Paul, 1998. "Spurious rejections by Dickey-Fuller tests in the presence of a break under the null," Journal of Econometrics, Elsevier, vol. 87(1), pages 191-203, August.
    8. Ulrich K. M¸ller & Graham Elliott, 2003. "Tests for Unit Roots and the Initial Condition," Econometrica, Econometric Society, vol. 71(4), pages 1269-1286, July.
    9. Dufour, Jean-Marie & King, Maxwell L., 1991. "Optimal invariant tests for the autocorrelation coefficient in linear regressions with stationary or nonstationary AR(1) errors," Journal of Econometrics, Elsevier, vol. 47(1), pages 115-143, January.
    10. Durlauf, Steven N & Phillips, Peter C B, 1988. "Trends versus Random Walks in Time Series Analysis," Econometrica, Econometric Society, vol. 56(6), pages 1333-1354, November.
    11. Werner Ploberger & Peter C.B. Phillips, 1998. "Rissanen's Theorem and Econometric Time Series," Cowles Foundation Discussion Papers 1197, Cowles Foundation for Research in Economics, Yale University.
    12. Timothy J. Vogelsang, 1998. "Trend Function Hypothesis Testing in the Presence of Serial Correlation," Econometrica, Econometric Society, vol. 66(1), pages 123-148, January.
    Full references (including those not matched with items on IDEAS)

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:yor:yorken:05/03. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Paul Hodgson). General contact details of provider: http://edirc.repec.org/data/deyoruk.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.