IDEAS home Printed from https://ideas.repec.org/p/wpa/wuwpfi/0310009.html

Some searches may not work properly. We apologize for the inconvenience.

   My bibliography  Save this paper

Explicit bond option and swaption formula in Heath-Jarrow-Morton one factor model

Author

Listed:
  • Marc Henrard

    (Bank for International Settlements)

Abstract

We present an explicit formula for European options on coupon bearing bonds and swaptions in the Heath-Jarrow-Morton (HJM) one factor model with non-stochastic volatility. The formula extends the Jamshidian formula for zero-coupon bonds. We provide also an explicit way to compute the hedging ratio (Delta) to hedge the option with its underlying.

Suggested Citation

  • Marc Henrard, 2003. "Explicit bond option and swaption formula in Heath-Jarrow-Morton one factor model," Finance 0310009, University Library of Munich, Germany.
  • Handle: RePEc:wpa:wuwpfi:0310009
    Note: Type of Document - LaTeX; prepared on Linux; to print on HP;
    as

    Download full text from publisher

    File URL: https://econwpa.ub.uni-muenchen.de/econ-wp/fin/papers/0310/0310009.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. repec:bla:jfinan:v:44:y:1989:i:1:p:205-09 is not listed on IDEAS
    2. David Heath & Robert Jarrow & Andrew Morton, 2008. "Bond Pricing And The Term Structure Of Interest Rates: A New Methodology For Contingent Claims Valuation," World Scientific Book Chapters, in: Financial Derivatives Pricing Selected Works of Robert Jarrow, chapter 13, pages 277-305, World Scientific Publishing Co. Pte. Ltd..
    3. Ho, Thomas S Y & Lee, Sang-bin, 1986. "Term Structure Movements and Pricing Interest Rate Contingent Claims," Journal of Finance, American Finance Association, vol. 41(5), pages 1011-1029, December.
    4. Peter Ritchken & L. Sankarasubramanian, 1995. "Volatility Structures Of Forward Rates And The Dynamics Of The Term Structure1," Mathematical Finance, Wiley Blackwell, vol. 5(1), pages 55-72, January.
    5. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    6. Robert A. Jarrow & Arkadev Chatterjea, 2019. "The Heath–Jarrow–Morton Libor Model," World Scientific Book Chapters, in: An Introduction to Derivative Securities, Financial Markets, and Risk Management, chapter 25, pages 618-654, World Scientific Publishing Co. Pte. Ltd..
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marc Henrard, 2005. "Bermudan swaptions in Hull-White one-factor model: analytical and numerical approaches," Finance 0505023, University Library of Munich, Germany.
    2. Bünyamin Erkan & Jean-Luc Prigent, 2020. "About Long-Term Cross-Currency Bermuda Swaption Pricing," Computational Economics, Springer;Society for Computational Economics, vol. 56(1), pages 239-262, June.
    3. Henrard, Marc, 2007. "CMS swaps in separable one-factor Gaussian LLM and HJM model," MPRA Paper 3228, University Library of Munich, Germany.
    4. Marc Henrard, 2004. "Semi-explicit Delta and Gamma for European swaptions in Hull- White one factor model," Finance 0411036, University Library of Munich, Germany, revised 25 Jan 2005.
    5. Ingo Beyna, 2013. "Interest Rate Derivatives," Lecture Notes in Economics and Mathematical Systems, Springer, edition 127, number 978-3-642-34925-6, December.
    6. Henrard, Marc, 2006. "Bonds futures and their options: more than the cheapest-to-deliver; quality option and marginning," MPRA Paper 2001, University Library of Munich, Germany.
    7. Marcin Dec, 2019. "Markovian and multi-curve friendly parametrisation of a HJM model used in valuation adjustment of interest rate derivatives," Bank i Kredyt, Narodowy Bank Polski, vol. 50(2), pages 107-148.
    8. Ingo Beyna & Carl Chiarella & Boda Kang, 2012. "Pricing Interest Rate Derivatives in a Multifactor HJM Model with Time," Research Paper Series 317, Quantitative Finance Research Centre, University of Technology, Sydney.
    9. Marc Henrard, 2004. "Overnight Indexed Swaps and Floored Compounded Instrument in HJM One-Factor Model," Finance 0402008, University Library of Munich, Germany.
    10. Henrard, Marc, 2006. "Bonds futures: Delta? No gamma!," MPRA Paper 2249, University Library of Munich, Germany, revised 01 May 2006.
    11. Marc Henrard, 2006. "A Semi-Explicit Approach to Canary Swaptions in HJM One-Factor Model," Applied Mathematical Finance, Taylor & Francis Journals, vol. 13(1), pages 1-18.
    12. Marc Henrard, 2005. "Inflation bond option pricing in Jarrow-Yildirim model," Finance 0510027, University Library of Munich, Germany.
    13. Henrard, Marc, 2006. "TIPS Options in the Jarrow-Yildirim model," MPRA Paper 1423, University Library of Munich, Germany.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bjork, Tomas, 2009. "Arbitrage Theory in Continuous Time," OUP Catalogue, Oxford University Press, edition 3, number 9780199574742, Decembrie.
    2. Gibson, Rajna & Lhabitant, Francois-Serge & Talay, Denis, 2010. "Modeling the Term Structure of Interest Rates: A Review of the Literature," Foundations and Trends(R) in Finance, now publishers, vol. 5(1–2), pages 1-156, December.
    3. Ravi Kashyap, 2016. "Options as Silver Bullets: Valuation of Term Loans, Inventory Management, Emissions Trading and Insurance Risk Mitigation using Option Theory," Papers 1609.01274, arXiv.org, revised Mar 2022.
    4. Josheski Dushko & Apostolov Mico, 2021. "Equilibrium Short-Rate Models Vs No-Arbitrage Models: Literature Review and Computational Examples," Econometrics. Advances in Applied Data Analysis, Sciendo, vol. 25(3), pages 42-71, September.
    5. Carl Chiarella & Xue-Zhong He & Christina Sklibosios Nikitopoulos, 2015. "Derivative Security Pricing," Dynamic Modeling and Econometrics in Economics and Finance, Springer, edition 127, number 978-3-662-45906-5, October.
    6. Ramaprasad Bhar, 2010. "Stochastic Filtering with Applications in Finance," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 7736, December.
    7. Ravi Kashyap, 2022. "Options as Silver Bullets: Valuation of Term Loans, Inventory Management, Emissions Trading and Insurance Risk Mitigation using Option Theory," Annals of Operations Research, Springer, vol. 315(2), pages 1175-1215, August.
    8. Frank De Jong & Joost Driessen & Antoon Pelsser, 2001. "Libor Market Models versus Swap Market Models for Pricing Interest Rate Derivatives: An Empirical Analysis," Review of Finance, European Finance Association, vol. 5(3), pages 201-237.
    9. Raphaël Douady, 2013. "Yield Curve Smoothing and Residual Variance of Fixed Income Positions," Post-Print hal-00666751, HAL.
    10. Fergusson, Kevin, 2020. "Less-Expensive Valuation And Reserving Of Long-Dated Variable Annuities When Interest Rates And Mortality Rates Are Stochastic," ASTIN Bulletin, Cambridge University Press, vol. 50(2), pages 381-417, May.
    11. Bossaerts, P. & Ghysels, E. & Gourieroux, C., 1996. "Arbitrage-Based Pricing when Volatility is Stochastic," Cahiers de recherche 9615, Centre interuniversitaire de recherche en économie quantitative, CIREQ.
    12. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    13. repec:uts:finphd:40 is not listed on IDEAS
    14. R. Bhar & C. Chiarella, 1997. "Transformation of Heath?Jarrow?Morton models to Markovian systems," The European Journal of Finance, Taylor & Francis Journals, vol. 3(1), pages 1-26, March.
    15. Chiarella, Carl & Clewlow, Les & Musti, Silvana, 2005. "A volatility decomposition control variate technique for Monte Carlo simulations of Heath Jarrow Morton models," European Journal of Operational Research, Elsevier, vol. 161(2), pages 325-336, March.
    16. Samuel Chege Maina, 2011. "Credit Risk Modelling in Markovian HJM Term Structure Class of Models with Stochastic Volatility," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 1-2011, January-A.
    17. Julian Holzermann, 2019. "Term Structure Modeling under Volatility Uncertainty," Papers 1904.02930, arXiv.org, revised Sep 2021.
    18. Carl Chiarella & Oh-Kang Kwon, 2001. "State Variables and the Affine Nature of Markovian HJM Term Structure Models," Research Paper Series 52, Quantitative Finance Research Centre, University of Technology, Sydney.
    19. Suresh M. Sundaresan, 2000. "Continuous‐Time Methods in Finance: A Review and an Assessment," Journal of Finance, American Finance Association, vol. 55(4), pages 1569-1622, August.
    20. Giuseppe Arbia & Michele Di Marcantonio, 2015. "Forecasting Interest Rates Using Geostatistical Techniques," Econometrics, MDPI, vol. 3(4), pages 1-28, November.
    21. Camilla Landén & Tomas Björk, 2002. "On the construction of finite dimensional realizations for nonlinear forward rate models," Finance and Stochastics, Springer, vol. 6(3), pages 303-331.

    More about this item

    Keywords

    Bond option; swaption; explicit formula; HJM model; one factor model; hedging;
    All these keywords.

    JEL classification:

    • G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing
    • E43 - Macroeconomics and Monetary Economics - - Money and Interest Rates - - - Interest Rates: Determination, Term Structure, and Effects

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wpa:wuwpfi:0310009. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: EconWPA (email available below). General contact details of provider: https://econwpa.ub.uni-muenchen.de .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.