IDEAS home Printed from https://ideas.repec.org/p/uts/rpaper/317.html
   My bibliography  Save this paper

Pricing Interest Rate Derivatives in a Multifactor HJM Model with Time

Author

Listed:

Abstract

We investigate the partial differential equation (PDE) for pricing interest derivatives in the multi-factor Cheyette Model, which involves time-dependent volatility functions with a special structure. The high dimensional parabolic PDE that results is solved numerically via a modified sparse grid approach, that turns out to be accurate and efficient. In addition we study the corresponding Monte Carlo simulation, which is fast since the distribution of the state variables can be calculated explicitly. The results obtained from both methodologies are compared to the known analytical solutions for bonds and caplets. When there is no analytical solution, both European and Bermudan swaptions have been evaluated using the sparse grid PDE approach that is shown to outperform the Monte Carlo simulation.

Suggested Citation

  • Ingo Beyna & Carl Chiarella & Boda Kang, 2012. "Pricing Interest Rate Derivatives in a Multifactor HJM Model with Time," Research Paper Series 317, Quantitative Finance Research Centre, University of Technology, Sydney.
  • Handle: RePEc:uts:rpaper:317
    as

    Download full text from publisher

    File URL: https://www.uts.edu.au/sites/default/files/qfr-archive-03/QFR-rp317.pdf
    Download Restriction: no

    References listed on IDEAS

    as
    1. R. Bhar & C. Chiarella, 1997. "Transformation of Heath?Jarrow?Morton models to Markovian systems," The European Journal of Finance, Taylor & Francis Journals, vol. 3(1), pages 1-26.
    2. Robert A. Jarrow, 2009. "The Term Structure of Interest Rates," Annual Review of Financial Economics, Annual Reviews, vol. 1(1), pages 69-96, November.
    3. Tomas Björk & Yuri Kabanov & Wolfgang Runggaldier, 1997. "Bond Market Structure in the Presence of Marked Point Processes," Mathematical Finance, Wiley Blackwell, vol. 7(2), pages 211-239.
    4. Marc Henrard, 2003. "Explicit bond option and swaption formula in Heath-Jarrow-Morton one factor model," Finance 0310009, EconWPA.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    Cheyette model; Gaussian HJM; multi-factor model; PDE valuation; sparse grid; Monte Carlo simulation;

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:uts:rpaper:317. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Duncan Ford). General contact details of provider: http://edirc.repec.org/data/qfutsau.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.