IDEAS home Printed from https://ideas.repec.org/p/wpa/wuwpem/0503014.html
   My bibliography  Save this paper

Powerful and Serial Correlation Robust Tests of the Economic Convergence Hypothesis

Author

Listed:
  • Ozgen Sayginsoy

    (University at Albany--SUNY)

Abstract

In this paper, a likelihood ratio approach is taken to derive a test of the economic convergence hypothesis in the context of the linear deterministic trend model. The test is designed to directly address the nonstandard nature of the hypothesis, and is a systematic improvement over existing methods for testing convergence in the same context. The test is first derived under the assumption of Gaussian errors with known serial correlation. However, the normality assumption is then relaxed, and the results are naturally extended to the case of covariance stationary errors with unknown serial correlation. The test statistic is a continuous function of individual t-statistics on the intercept and slope parameters of the linear deterministic trend model, and therefore, standard heteroskedasticity and autocorrelation consistent estimators of the long-run variance can be directly implemented. Building upon the likelihood ratio framework, concrete and specific tests are recommended to be used in practice. The recommended tests do not require the knowledge of the form of serial correlation in the data, and they are robust to highly persistent serial correlation, including the case of a unit root in the errors. The recommended tests utilize the nonparametric kernel variance estimators, which are analyzed using the fixed bandwidth (fixed-b) asymptotic framework recently proposed by Kiefer and Vogelsang (2003). The fixed-b framework makes possible the choice of kernel and bandwidth that deliver tests with maximal asymptotic power within a specific class of tests. It is shown that when the Daniell kernel variance estimator is implemented with specific bandwidth choices, the recommended tests have asymptotic power close that of the known variance case, as well as good finite sample size and power properties. Finally, the newly developed tests are used to investigate economic convergence among eight regions of the United States (as defined by the Bureau of Economic Analysis) in the post-World-War-II period. Empirical evidence is found for convergence in three of the eight regions.

Suggested Citation

  • Ozgen Sayginsoy, 2005. "Powerful and Serial Correlation Robust Tests of the Economic Convergence Hypothesis," Econometrics 0503014, University Library of Munich, Germany, revised 11 Mar 2005.
  • Handle: RePEc:wpa:wuwpem:0503014
    Note: Type of Document - pdf; pages: 58. The paper is 1.5 MB PDF File
    as

    Download full text from publisher

    File URL: https://econwpa.ub.uni-muenchen.de/econ-wp/em/papers/0503/0503014.pdf
    Download Restriction: no

    References listed on IDEAS

    as
    1. Andrew B. Bernard & Steven N. Durlauf, 1991. "Convergence of International Output Movements," NBER Working Papers 3717, National Bureau of Economic Research, Inc.
    2. Gourieroux, Christian & Holly, Alberto & Monfort, Alain, 1982. "Likelihood Ratio Test, Wald Test, and Kuhn-Tucker Test in Linear Models with Inequality Constraints on the Regression Parameters," Econometrica, Econometric Society, vol. 50(1), pages 63-80, January.
    3. Kiefer, Nicholas M. & Vogelsang, Timothy J., 2005. "A New Asymptotic Theory For Heteroskedasticity-Autocorrelation Robust Tests," Econometric Theory, Cambridge University Press, vol. 21(06), pages 1130-1164, December.
    4. Bunzel, Helle & Vogelsang, Timothy J., 2005. "Powerful Trend Function Tests That Are Robust to Strong Serial Correlation, With an Application to the Prebisch-Singer Hypothesis," Journal of Business & Economic Statistics, American Statistical Association, vol. 23, pages 381-394, October.
    5. Robert J. Barro, 1991. "Economic Growth in a Cross Section of Countries," The Quarterly Journal of Economics, Oxford University Press, vol. 106(2), pages 407-443.
    6. Kwiatkowski, Denis & Phillips, Peter C. B. & Schmidt, Peter & Shin, Yongcheol, 1992. "Testing the null hypothesis of stationarity against the alternative of a unit root : How sure are we that economic time series have a unit root?," Journal of Econometrics, Elsevier, vol. 54(1-3), pages 159-178.
    7. Bart Hobijn & Philip Hans Franses, 2000. "Asymptotically perfect and relative convergence of productivity," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 15(1), pages 59-81.
    8. Andrews, Donald W K, 1991. "Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estimation," Econometrica, Econometric Society, vol. 59(3), pages 817-858, May.
    9. N. Gregory Mankiw & David Romer & David N. Weil, 1992. "A Contribution to the Empirics of Economic Growth," The Quarterly Journal of Economics, Oxford University Press, vol. 107(2), pages 407-437.
    10. Phillips, P C B, 1987. "Time Series Regression with a Unit Root," Econometrica, Econometric Society, vol. 55(2), pages 277-301, March.
    11. Peter C.B. Phillips & Victor Solo, 1989. "Asymptotics for Linear Processes," Cowles Foundation Discussion Papers 932, Cowles Foundation for Research in Economics, Yale University.
    12. Quah, Danny, 1993. " Galton's Fallacy and Tests of the Convergence Hypothesis," Scandinavian Journal of Economics, Wiley Blackwell, vol. 95(4), pages 427-443, December.
    13. Wouter J. den Haan & Andrew T. Levin, 2000. "Robust Covariance Matrix Estimation with Data-Dependent VAR Prewhitening Order," NBER Technical Working Papers 0255, National Bureau of Economic Research, Inc.
    14. Phillips, P C B, 1987. "Time Series Regression with a Unit Root," Econometrica, Econometric Society, vol. 55(2), pages 277-301, March.
    15. Baumol, William J, 1986. "Productivity Growth, Convergence, and Welfare: What the Long-run Data Show," American Economic Review, American Economic Association, vol. 76(5), pages 1072-1085, December.
    16. Friedman, Milton, 1992. "Do Old Fallacies Ever Die?," Journal of Economic Literature, American Economic Association, vol. 30(4), pages 2129-2132, December.
    17. Scott J. Brown & N. Edward Coulson & Robert F. Engle, 1990. "Non-Cointegration and Econometric Evaluation of Models of Regional Shift and Share," NBER Working Papers 3291, National Bureau of Economic Research, Inc.
    18. Wolak, Frank A., 1989. "Testing inequality constraints in linear econometric models," Journal of Econometrics, Elsevier, vol. 41(2), pages 205-235, June.
    19. Timothy J. Vogelsang, 1998. "Trend Function Hypothesis Testing in the Presence of Serial Correlation," Econometrica, Econometric Society, vol. 66(1), pages 123-148, January.
    20. Breitung, Jorg, 2002. "Nonparametric tests for unit roots and cointegration," Journal of Econometrics, Elsevier, vol. 108(2), pages 343-363, June.
    21. Tanaka, Katsuto, 1990. "Testing for a Moving Average Unit Root," Econometric Theory, Cambridge University Press, vol. 6(04), pages 433-444, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Harvey, David I. & Leybourne, Stephen J. & Taylor, A.M. Robert, 2006. "Modified tests for a change in persistence," Journal of Econometrics, Elsevier, vol. 134(2), pages 441-469, October.
    2. Taipalus, Katja, 2012. "Signaling asset price bubbles with time-series methods," Research Discussion Papers 7/2012, Bank of Finland.

    More about this item

    Keywords

    Likelihood Ratio; Joint Inequality; HAC Estimator; Fixed-b Asymptotics; Power Envelope; Unit Root; Linear Trend; BEA Regions.;

    JEL classification:

    • C1 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General
    • C2 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables
    • C3 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables
    • C4 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics
    • C5 - Mathematical and Quantitative Methods - - Econometric Modeling
    • C8 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wpa:wuwpem:0503014. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (EconWPA). General contact details of provider: https://econwpa.ub.uni-muenchen.de .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.