IDEAS home Printed from https://ideas.repec.org/p/wpa/wuwpco/0004001.html
   My bibliography  Save this paper

Agent-Based Computational Economics: A Brief Guide to the Literature

Author

Listed:
  • Leigh Tesfatsion

    (Iowa State University)

Abstract

Agent-based computational economics (ACE)is the computational study of economies modelled as evolving systems of autonomous interacting agents. This short paper is a brief guide to recent ACE research. For more information, visit the ACE Web site at http://www.econ.iastate.edu/tesfatsi/ace.htm. Resources available at the ACE Web site include surveys, an annotated syllabus of readings, software, teaching materials, pointers to research on economic and social network formation, and pointers to individual researchers and research groups.

Suggested Citation

  • Leigh Tesfatsion, 2000. "Agent-Based Computational Economics: A Brief Guide to the Literature," Computational Economics 0004001, University Library of Munich, Germany.
  • Handle: RePEc:wpa:wuwpco:0004001
    Note: Type of Document - pdf; prepared on IBM PC - PC-TEX; to print on HP/PostScript/; pages: 6 ; figures: none
    as

    Download full text from publisher

    File URL: https://econwpa.ub.uni-muenchen.de/econ-wp/comp/papers/0004/0004001.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. McFadzean, David & Tesfatsion, Leigh, 1999. "A C++ Platform for the Evolution of Trade Networks," Computational Economics, Springer;Society for Computational Economics, vol. 14(1-2), pages 109-134, October.
    2. Joshua M. Epstein & Robert L. Axtell, 1996. "Growing Artificial Societies: Social Science from the Bottom Up," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262550253, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Roberto Leombruni & Matteo Richiardi, 2006. "LABORsim: An Agent-Based Microsimulation of Labour Supply – An Application to Italy," Computational Economics, Springer;Society for Computational Economics, vol. 27(1), pages 63-88, February.
    2. Roberto Leombruni, 2002. "The Methodological Status of Agent-Based Simulations," LABORatorio R. Revelli Working Papers Series 19, LABORatorio R. Revelli, Centre for Employment Studies.
    3. Sasaki, Yuya, 2004. "The Equivalence Of Evolutionary Games And Distributed Monte Carlo Learning," Economics Research Institute, ERI Series 28338, Utah State University, Economics Department.
    4. Denis Phan & Stephane Pajot & Jean-Pierre Nadal, 2003. "The Monopolist's Market with Discrete Choices and Network Externality Revisited: Small-Worlds, Phase Transition and Avalanches in an ACE Framework," Computing in Economics and Finance 2003 150, Society for Computational Economics.
    5. Davide Bazzana, 2020. "Ageing population and pension system sustainability: reforms and redistributive implications," Economia Politica: Journal of Analytical and Institutional Economics, Springer;Fondazione Edison, vol. 37(3), pages 971-992, October.
    6. Matteo Richiardi & Roberto Leombruni & Nicole J. Saam & Michele Sonnessa, 2006. "A Common Protocol for Agent-Based Social Simulation," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 9(1), pages 1-15.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. McFadzean, David & Stewart, Deron & Tesfatsion, Leigh, 2000. "A Computational Laboratory for Evolutionary Trade Network," ISU General Staff Papers 200008010700001051, Iowa State University, Department of Economics.
    2. Tesfatsion, Leigh, 1998. "Teaching Agent-Based Computational Economics to Graduate Students," ISU General Staff Papers 199807010700001043, Iowa State University, Department of Economics.
    3. Tesfatsion, Leigh, 1995. "How Economists Can Get Alife," Economic Reports 18196, Iowa State University, Department of Economics.
    4. Tesfatsion, Leigh, 1998. "Gale-Shapley Matching in an Evolutionary Trade Network Game," ISU General Staff Papers 199804010800001041, Iowa State University, Department of Economics.
    5. Tomas Klos, 1999. "Governance and Matching," Computing in Economics and Finance 1999 341, Society for Computational Economics.
    6. Tomas Klos, "undated". "Decentralized Interaction and Co-adaptation in the Repeated Prisoner's Dilemma," Computing in Economics and Finance 1997 88, Society for Computational Economics.
    7. Tomas B. Klos, 1999. "Decentralized Interaction and Co-Adaptation in the Repeated Prisoner&2018;s Dilemma," Computational and Mathematical Organization Theory, Springer, vol. 5(2), pages 147-165, July.
    8. repec:dgr:rugsom:97b33 is not listed on IDEAS
    9. repec:dgr:rugsom:99b41 is not listed on IDEAS
    10. Luís de Sousa & Alberto Rodrigues da Silva, 2015. "Showcasing a Domain Specific Language for Spatial Simulation Scenarios with case studies," ERSA conference papers ersa15p1044, European Regional Science Association.
    11. Eugenio Caverzasi & Antoine Godin, 2013. "Stock-flow Consistent Modeling through the Ages," Economics Working Paper Archive wp_745, Levy Economics Institute.
    12. Luca Riccetti & Alberto Russo & Mauro Gallegati, 2015. "An agent based decentralized matching macroeconomic model," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 10(2), pages 305-332, October.
    13. Michael J. Radzicki, 2003. "Mr. Hamilton, Mr. Forrester, and a Foundation for Evolutionary Economics," Journal of Economic Issues, Taylor & Francis Journals, vol. 37(1), pages 133-173, March.
    14. Tesfatsion, Leigh, 2001. "Structure, behavior, and market power in an evolutionary labor market with adaptive search," Journal of Economic Dynamics and Control, Elsevier, vol. 25(3-4), pages 419-457, March.
    15. Kazuya Yamamoto, 2015. "Mobilization, Flexibility of Identity, and Ethnic Cleavage," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 18(2), pages 1-8.
    16. Dirk Helbing & Thomas U. Grund, 2013. "Editorial: Agent-Based Modeling And Techno-Social Systems," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 16(04n05), pages 1-3.
    17. Ross Richardson & Matteo G. Richiardi & Michael Wolfson, 2015. "We ran one billion agents. Scaling in simulation models," LABORatorio R. Revelli Working Papers Series 142, LABORatorio R. Revelli, Centre for Employment Studies.
    18. Roberto Veneziani & Luca Zamparelli & Michalis Nikiforos & Gennaro Zezza, 2017. "Stock-Flow Consistent Macroeconomic Models: A Survey," Journal of Economic Surveys, Wiley Blackwell, vol. 31(5), pages 1204-1239, December.
    19. Cincotti, Silvano & Raberto, Marco & Teglio, Andrea, 2010. "Credit money and macroeconomic instability in the agent-based model and simulator Eurace," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 4, pages 1-32.
    20. Khalil, Elias L., 2010. "The Bayesian fallacy: Distinguishing internal motivations and religious beliefs from other beliefs," Journal of Economic Behavior & Organization, Elsevier, vol. 75(2), pages 268-280, August.
    21. Jakub Bijak & Jason D. Hilton & Eric Silverman & Viet Dung Cao, 2013. "Reforging the Wedding Ring," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 29(27), pages 729-766.
    22. Leigh S. Tesfatsion, "undated". "An Evolutionary Trade Network Game with Preferential Partner Selection," Computing in Economics and Finance 1996 _057, Society for Computational Economics.

    More about this item

    Keywords

    Agent-based computational economics;

    JEL classification:

    • C6 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling
    • C7 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory
    • C9 - Mathematical and Quantitative Methods - - Design of Experiments

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wpa:wuwpco:0004001. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: EconWPA (email available below). General contact details of provider: https://econwpa.ub.uni-muenchen.de .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.