IDEAS home Printed from
   My bibliography  Save this paper

Best Response Adaptation for Role Games


  • U. Berger


Consider a large population of individuals which can be in one of two distinct roles. The role of the individual is switched every now and then, and interactions occur between randomly paired individuals in different roles. These interactions are represented by a bimatrix game and individuals are modeled as boundedly rational expected utility maximizers who choose their actions according to a myopic best response rule. The resulting dynamics of the population state is given by a system of differential equations and differential inclusions. If the bimatrix game is zero-sum, the population state converges to a fixed point set corresponding to the set of Nash equilibria of this game. Moreover, if the zero-sum game has a unique Nash equilibrium, the global attractor of the population state is a unique and explicitly computable fixed point, even if the set of fixed points is a continuum (which is the case, if the unique Nash equilibrium is completely mixed). This global attractor does neither depend on the rates of role switching and strategy reviewing, nor on the relative size of the two subpopulations of individuals in different roles.

Suggested Citation

  • U. Berger, 1998. "Best Response Adaptation for Role Games," Working Papers ir98086, International Institute for Applied Systems Analysis.
  • Handle: RePEc:wop:iasawp:ir98086

    Download full text from publisher

    File URL:
    Download Restriction: no

    File URL:
    Download Restriction: no

    References listed on IDEAS

    1. Jorgen W. Weibull, 1997. "Evolutionary Game Theory," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262731215, January.
    Full references (including those not matched with items on IDEAS)

    More about this item


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wop:iasawp:ir98086. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Thomas Krichel). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.