IDEAS home Printed from https://ideas.repec.org/p/wiw/wiwrsa/ersa12p232.html
   My bibliography  Save this paper

Identifying Clusters within R&D Intensive Industries Using Local Spatial Methods

Author

Listed:
  • Reinhold Kosfeld

    ()

Abstract

In recent times, there has been a renewed interest in cluster policies for supporting industrial and regional development. Prominent economics like Porter and Krugman emphasise the role of clusters in regional competition and show in which way clusters can positively affect competition by increasing productivity and innovation. Because of the linkage between growth and innovation, R&D intensive industries play a crucial role in cluster development strategies. Empirical cluster research has to contribute to the understanding the process of cluster formation. In particular for developing profound clusters strategies and assessing the limits cluster policy, knowledge of existing structures and tendencies is necessary. In these strategies, high-tech and research-intensive industries play a crucial role. Audretsch and Feldman argue that industries with high innovation activity tend to cluster for exploiting benefits from tacit knowledge flows. Krugman stresses that information flows and knowledge spillovers may be sensitive to geographic impediments. Since obstacles tend to rise with increasing distance, spatial clusters may be localised. If, however, geographic barriers are less relevant, the reach of tacit knowledge flows may be much larger. For regional policy the geographical level at which clusters occur is of prominent interest. Traditional concentration indices like the Gini coefficient, Theils’s inequalitiy index or the Ellison-Glaeser index are ‘aspatial’ by construction. This means that these indices disregard relevant spatial information on the distribution of a geo-referenced variable. In particular, attribute values of adjacent regions are completely ignored. Moreover, the spatial scale of clustering formation is not taken into account. First experiences with methods of exploratory spatial data analysis (ESDA) like local Moran’s I and Getis-Ord Gi statistics in pattern recognition are available. Le Gallo and Ertur (2003) utilise local indicators of spatial association to analyse the distribution of regional GDP per capita in Europe. Feser et al. (2005), Lafourcade and Mion (2007) and Kies et al. (2009) demonstrate the potential of these ESDA techniques in identifying economic clusters and spatial heterogeneity in geographical space. However, while usually local Moran’s I and Getis-Ord Gi statistics are applied in detecting economic clusters, up to now spatial scan techniques are largely ignored (Kang, 2010). In this paper, advantages and pitfalls of spatial scan tests in identifying R&D clusters are examined. Some essentials in implementing spatial scan techniques in economic clusters research are worked out.

Suggested Citation

  • Reinhold Kosfeld, 2012. "Identifying Clusters within R&D Intensive Industries Using Local Spatial Methods," ERSA conference papers ersa12p232, European Regional Science Association.
  • Handle: RePEc:wiw:wiwrsa:ersa12p232
    as

    Download full text from publisher

    File URL: http://www-sre.wu.ac.at/ersa/ersaconfs/ersa12/e120821aFinal00234.pdf
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Feldman, Maryann P. & Audretsch, David B., 1999. "Innovation in cities:: Science-based diversity, specialization and localized competition," European Economic Review, Elsevier, vol. 43(2), pages 409-429, February.
    2. Lafourcade, Miren & Mion, Giordano, 2007. "Concentration, agglomeration and the size of plants," Regional Science and Urban Economics, Elsevier, vol. 37(1), pages 46-68, January.
    3. Rebecca Henderson & Adam B. Jaffe & Manuel Trajtenberg, 1998. "Universities As A Source Of Commercial Technology: A Detailed Analysis Of University Patenting, 1965-1988," The Review of Economics and Statistics, MIT Press, vol. 80(1), pages 119-127, February.
    4. Luisito BERTINELLI & Rosella NICOLINI, 2002. "Investment decision and the spatial dimension : Evidence from firm level data," Discussion Papers (IRES - Institut de Recherches Economiques et Sociales) 2002007, Université catholique de Louvain, Institut de Recherches Economiques et Sociales (IRES).
    5. LE GALLO, Julie & ERTUR, Cem, 2000. "Exploratory spatial data analysis of the distribution of regional per capita GDP in Europe, 1980-1995," LATEC - Document de travail - Economie (1991-2003) 2000-09, LATEC, Laboratoire d'Analyse et des Techniques EConomiques, CNRS UMR 5118, Université de Bourgogne.
    6. Glaeser, Edward L & Hedi D. Kallal & Jose A. Scheinkman & Andrei Shleifer, 1992. "Growth in Cities," Journal of Political Economy, University of Chicago Press, vol. 100(6), pages 1126-1152, December.
      • Edward L. Glaeser & Hedi D. Kallal & Jose A. Scheinkman & Andrei Shleifer, 1991. "Growth in Cities," NBER Working Papers 3787, National Bureau of Economic Research, Inc.
      • Glaeser, Edward Ludwig & Kallal, Hedi D. & Scheinkman, Jose A. & Shleifer, Andrei, 1992. "Growth in Cities," Scholarly Articles 3451309, Harvard University Department of Economics.
    7. Bertinelli, Luisito & Nicolini, Rosella, 2005. "R&D Investments and the Spatial Dimension: Evidence from Firm Level Data," The Review of Regional Studies, Southern Regional Science Association, vol. 35(2), pages 206-230.
    8. Frank Neffke & Martin Svensson Henning & Ron Boschma & Karl-Johan Lundquist & Lars-Olof Olander, 2008. "Who Needs Agglomeration? Varying Agglomeration Externalities and the Industry Life Cycle," Papers in Evolutionary Economic Geography (PEEG) 0808, Utrecht University, Department of Human Geography and Spatial Planning, Group Economic Geography, revised Apr 2008.
    9. Edward Feser & Stuart Sweeney & Henry Renski, 2005. "A Descriptive Analysis of Discrete U.S. Industrial Complexes," Journal of Regional Science, Wiley Blackwell, vol. 45(2), pages 395-419.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ben Said FOUED, 2015. "Tunisian Coastal Cities Attractiveness And Amenities," Theoretical and Empirical Researches in Urban Management, Research Centre in Public Administration and Public Services, Bucharest, Romania, vol. 10(3), pages 49-70, August.
    2. Ben said, Foued, 2014. "Tunisian Coastal Cities Attractiveness and Amenities," MPRA Paper 52969, University Library of Munich, Germany.

    More about this item

    JEL classification:

    • R12 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - General Regional Economics - - - Size and Spatial Distributions of Regional Economic Activity; Interregional Trade (economic geography)
    • R15 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - General Regional Economics - - - Econometric and Input-Output Models; Other Methods

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wiw:wiwrsa:ersa12p232. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Gunther Maier). General contact details of provider: http://www.ersa.org .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.