IDEAS home Printed from https://ideas.repec.org/p/wbk/wbrwps/1779.html
   My bibliography  Save this paper

Water allocation mechanisms : principles and examples

Author

Listed:
  • Dinar, Ariel
  • Rosegrant, Mark W.
  • Meinzen-Dick, Ruth

Abstract

From the earliest times, water resources have been allocated on the basis of social criteria -maintaining the community by ensuring that water is available for human consumption, for sanitation, and for food production. Societies have invested capital in infrastructure to maintain this allocation. Yet social change, including changes in (and more understanding of) how goods are distributed, has produced new issues in water allocation. Population growth has made water scarcity a major problem in many countries and water pollution, while by no means a recent problem, is more widespread than ever before. Traditionally the state has played a dominant role in managing water resources, but inefficient use of water, poor cost recovery for operating and maintenance expenses, the mounting cost of developing new water sources, and problems with the quality of service in agency-managed systems has led to a search for alternatives that make water allocation and management more efficient. The authors address some of the basic principles of treating water as an economic good and of allocating it among the sectors. After outlining the economic principles behind allocating scarce water resources, they review the actual means of various mechanisms used for allocating water, including marginal cost pricing, social planning, user-based allocation, and water markets. Giving examples from experience in several countries, they weigh the pros and cons of different approaches to water allocation, showing that no single approach is suitable for all situations. Clearly that state must play an important regulatory role, for example, but how effectively it does so depends on the relative political influence of various stakeholders and segments of society. User-based allocation is generally more flexible than state allocation, but collective action is not equally effective everywhere; it is most likely to emerge where there is strong demand for water and a history of cooperation. The outcome of market allocation depends on the economic value of water for various uses, but moving toward tradable property rights in water may ease the process of intersectoral reallocation by compensating the"losers"and creating incentives for efficient water use in all sectors.

Suggested Citation

  • Dinar, Ariel & Rosegrant, Mark W. & Meinzen-Dick, Ruth, 1997. "Water allocation mechanisms : principles and examples," Policy Research Working Paper Series 1779, The World Bank.
  • Handle: RePEc:wbk:wbrwps:1779
    as

    Download full text from publisher

    File URL: http://www-wds.worldbank.org/external/default/WDSContentServer/WDSP/IB/1997/06/01/000009265_3970909143002/Rendered/PDF/multi_page.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tsur, Yacov & Dinar, Ariel, 1997. "The Relative Efficiency and Implementation Costs of Alternative Methods for Pricing Irrigation Water," The World Bank Economic Review, World Bank Group, vol. 11(2), pages 243-262, May.
    2. Paul Holden & Mateen Thobani, 1995. "Tradable Water Rights: A Property Rights Approach to Improving Water Use and Promoting Investment," Latin American Journal of Economics-formerly Cuadernos de Economía, Instituto de Economía. Pontificia Universidad Católica de Chile., vol. 32(97), pages 263-290.
    3. Randall, Alan, 1981. "Property Entitlements And Pricing Policies For A Maturing Water Economy," Australian Journal of Agricultural Economics, Australian Agricultural and Resource Economics Society, vol. 25(3), pages 1-26, December.
    4. Hearne, R.R. & Easter, K.W., 1995. "Water Allocation and Water Markets. An Analysis of Gains-from-Trade in Chile," Papers 315, World Bank - Technical Papers.
    5. Alan Randall, 1981. "Property Entitlements And Pricing Policies For A Maturing Water Economy," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 25(3), pages 195-220, December.
    6. Pitana, I. G., 1993. "Performance indicators: a case of a newly developed FMIS in Bali, Indonesia," Conference Papers h013494, International Water Management Institute.
    7. Rosegrant, Mark W. & Binswanger, Hans P., 1994. "Markets in tradable water rights: Potential for efficiency gains in developing country water resource allocation," World Development, Elsevier, vol. 22(11), pages 1613-1625, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shi, Tian, 2006. "Simplifying complexity: Rationalising water entitlements in the Southern Connected River Murray System, Australia," Agricultural Water Management, Elsevier, vol. 86(3), pages 229-239, December.
    2. Bekchanov, Maksud & Bhaduri, Anik & Ringler, Claudia, 2015. "Potential gains from water rights trading in the Aral Sea Basin," Agricultural Water Management, Elsevier, vol. 152(C), pages 41-56.
    3. Gomez-Limon, Jose A. & Martinez, Yolanda, 2006. "Multi-criteria modelling of irrigation water market at basin level: A Spanish case study," European Journal of Operational Research, Elsevier, vol. 173(1), pages 313-336, August.
    4. Francesco Prota, 2002. "Water Resources And Water Policies," Working Papers 8_2002, D.E.S. (Department of Economic Studies), University of Naples "Parthenope", Italy.
    5. Rosegrant, M. W. & Ringler, C. & McKinney, D. C. & Cai, X. & Keller, A. & Donoso, G., 2000. "Integrated economic-hydrologic water modeling at the basin scale: the Maipo river basin," Agricultural Economics, Blackwell, vol. 24(1), pages 33-46, December.
    6. Deng, Xiaohong & Xu, Zhongmin & Song, Xiaoyu & Zhou, Jian, 2017. "Transaction costs associated with agricultural water trading in the Heihe River Basin, Northwest China," Agricultural Water Management, Elsevier, vol. 186(C), pages 29-39.
    7. Ansink, Erik & Weikard, Hans-Peter, 2009. "Contested water rights," European Journal of Political Economy, Elsevier, vol. 25(2), pages 247-260, June.
    8. Carlos Mario Gómez Gómez & C. D. Pérez-Blanco & David Adamson & Adam Loch, 2018. "Managing Water Scarcity at a River Basin Scale with Economic Instruments," Water Economics and Policy (WEP), World Scientific Publishing Co. Pte. Ltd., vol. 4(01), pages 1-31, January.
    9. José A. Gómez-Limón & Yolanda Martínez Martínez, 2004. "Multicriteria Modelling of Irrigation Water Market at Basin Level," Economic Working Papers at Centro de Estudios Andaluces E2004/26, Centro de Estudios Andaluces.
    10. Rosegrant, Mark W., 1997. "Water resources in the twenty-first century: challenges and implications for action," 2020 vision discussion papers 20, International Food Policy Research Institute (IFPRI).
    11. Varela-Ortega, Consuelo & M. Sumpsi, Jose & Garrido, Alberto & Blanco, Maria & Iglesias, Eva, 1998. "Water pricing policies, public decision making and farmers' response: implications for water policy," Agricultural Economics, Blackwell, vol. 19(1-2), pages 193-202, September.
    12. Rosegrant, Mark W. & Perez, Nicostrato D., 1997. "Water resources development in Africa: a review and synthesis of issues, potentials, and strategies for the future," EPTD discussion papers 28, International Food Policy Research Institute (IFPRI).
    13. Bolinches, Antonio & Blanco-Gutiérrez, Irene & Zubelzu, Sergio & Esteve, Paloma & Gómez-Ramos, Almudena, 2022. "A method for the prioritization of water reuse projects in agriculture irrigation," Agricultural Water Management, Elsevier, vol. 263(C).
    14. Carlos Gómez & C. Pérez-Blanco, 2014. "Simple Myths and Basic Maths About Greening Irrigation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(12), pages 4035-4044, September.
    15. Marshall, Elizabeth P. & Weinberg, Marca, 2012. "Baselines in Environmental Markets: Tradeoffs Between Cost and Additionality," Economic Brief 138922, United States Department of Agriculture, Economic Research Service.
    16. Ancev, Tiho, 2015. "The role of the commonwealth environmental water holder in annual water allocation markets," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 59(1), January.
    17. Quiggin, John & Adamson, David & Chambers, Sarah & Schrobback, Peggy, 2009. "Climate change, mitigation and adaptation: the case of the Murray-Darling Basin in Australia," Risk and Sustainable Management Group Working Papers 149878, University of Queensland, School of Economics.
    18. Wichelns, Dennis, 1999. "An economic model of waterlogging and salinization in arid regions," Ecological Economics, Elsevier, vol. 30(3), pages 475-491, September.
    19. Palomo-Hierro, Sara & Loch, Adam & Pérez-Blanco, C. Dionisio, 2022. "Improving water markets in Spain: Lesson-drawing from the Murray-Darling Basin in Australia," Agricultural Water Management, Elsevier, vol. 259(C).
    20. Ruth Meinzen-Dick and Claudia Ringler, 2006. "Water Reallocation: Challenges, Threats, and Solutions for the Poor," Human Development Occasional Papers (1992-2007) HDOCPA-2006-41, Human Development Report Office (HDRO), United Nations Development Programme (UNDP).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wbk:wbrwps:1779. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: https://edirc.repec.org/data/dvewbus.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Roula I. Yazigi (email available below). General contact details of provider: https://edirc.repec.org/data/dvewbus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.