IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Forecasting volatility in commodity markets

  • Kroner, Kenneth F.
  • Kneafsey, Devin P.
  • Claessens, Stijn
  • DEC

Commodity prices have historically been among the most volatile of international prices. Measured volatility (the standard deviation of price changes) has not been below 15 percent and at times has been more than 50 percent. Often the volatility of commodity prices has exceeded that of exchange rates and interest rates. The large price variations are caused by disturbances in demand and supply. Stockholding leads to some price smoothing, but when stocks are low, prices can jump sharply. As a result, commodity price series are not stationary and in some periods they jump abruptly to high levels or fall precipitously to low levels relative to their long-run average. Thus it is difficult to determine long-term price trends and the underlying distribution of prices. The volatility of commodity prices makes price forecasting difficult. Indeed, realized prices often deviate greatly from forecasted prices, which has led to the practice of giving forecasts probability ranges. But assigning probability ranges requires forecasting future price volatility, which, given uncertainties about true price distribution, is difficult. One potentially useful source of information for forecasting volatility is the volatility forecasts imbedded in the prices of options written on commodities traded in exchanges. Options give the holder the right to buy (call) or sell (put) a certain commodity at a certain date at a fixed (exercise) price. Options prices depend on several variables, one of which is the expected volatility up to the maturity date. Given a specific theoretical model, the market prices of options can be used to derive the market's expectations about price volatility and the price distribution. The authors systematically analyze different methods'abilities to forecast commodity price volatility (for several commodities). They collected the daily prices of commodity options and other variables for seven commodities (cocoa, corn, cotton, gold, silver, sugar, and wheat). They extracted the volatility forecasts implicit in options prices using several techniques. They compared several volatility forecasting methods, divided into three categories: (1) forecasts using only expectations derived form options prices; (2) forecasts using only time-series modeling; (3) forecasts that combine market expectations and time-series modeling (a new method devised for this purpose). They find that the volatility forecasts produced by method 3 outperform the first two as well as the naive forecast based on historical volatility. This result holds both in and out of sample for almost all commodities considered.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www-wds.worldbank.org/servlet/WDSContentServer/WDSP/IB/1993/11/01/000009265_3961005141748/Rendered/PDF/multi_page.pdf
Download Restriction: no

Paper provided by The World Bank in its series Policy Research Working Paper Series with number 1226.

as
in new window

Length:
Date of creation: 30 Nov 1993
Date of revision:
Handle: RePEc:wbk:wbrwps:1226
Contact details of provider: Postal: 1818 H Street, N.W., Washington, DC 20433
Phone: (202) 477-1234
Web page: http://www.worldbank.org/
Email:


More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
  2. Bollerslev, Tim & Chou, Ray Y. & Kroner, Kenneth F., 1992. "ARCH modeling in finance : A review of the theory and empirical evidence," Journal of Econometrics, Elsevier, vol. 52(1-2), pages 5-59.
  3. Akgiray, Vedat, 1989. "Conditional Heteroscedasticity in Time Series of Stock Returns: Evidence and Forecasts," The Journal of Business, University of Chicago Press, vol. 62(1), pages 55-80, January.
  4. Latane, Henry A & Rendleman, Richard J, Jr, 1976. "Standard Deviations of Stock Price Ratios Implied in Option Prices," Journal of Finance, American Finance Association, vol. 31(2), pages 369-81, May.
  5. Lamoureux, Christopher G & Lastrapes, William D, 1993. "Forecasting Stock-Return Variance: Toward an Understanding of Stochastic Implied Volatilities," Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 293-326.
  6. Barone-Adesi, Giovanni & Whaley, Robert E, 1987. " Efficient Analytic Approximation of American Option Values," Journal of Finance, American Finance Association, vol. 42(2), pages 301-20, June.
  7. Black, Fischer, 1976. "The pricing of commodity contracts," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 167-179.
  8. Shang-Jin Wei & Jeffrey A. Frankel, 1991. "Are Option-Implied Forecasts of Exchange Rate Volatility Excessively Variable?," NBER Working Papers 3910, National Bureau of Economic Research, Inc.
  9. Taylor, Stephen J., 1987. "Forecasting the volatility of currency exchange rates," International Journal of Forecasting, Elsevier, vol. 3(1), pages 159-170.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:wbk:wbrwps:1226. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Roula I. Yazigi)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.