IDEAS home Printed from https://ideas.repec.org/p/vuw/vuwecf/18792.html
   My bibliography  Save this paper

Sensitivity of cautious-relaxed investment policies to target variation

Author

Listed:
  • Foster, Jarred
  • Krawczyk, Jacek B

Abstract

This study builds on recent findings that target-based utility measures, used in the dynamic portfolio optimisation, deliver investment policies that can generate leftskewed payoff distributions. These policies can lead to small probabilities of low payoffs. This is in contrast to the classical portfolio optimisation strategies that commonly deliver right-skewed payoff distributions, which imply a high probability of losses. The left-skewed payoff distributions can be obtained when a “cautious-relaxed” investment policy is applied in portfolio management. Such a policy will be adopted by investors who are both cautious in seeking a payoff meeting a certain target, but relaxed toward the possibility of exceeding it. We use computational methods to analyse the effects of varying the target on the payoff distribution and also examine how the fund manager’s explicit preferences, when they differ from the investor’s, can impact the distribution. We found that increasing the target causes the distribution to become less left skewed. Lowering the target slightly, keeps the left-skewed payoff distribution albeit the mode diminishes. Decreasing the target substantially so it is below the safe investment payoff, changes the skew. Investor’s payoff will not suffer even if the actual fund manager allows for their own utility in the optimisation problem.

Suggested Citation

  • Foster, Jarred & Krawczyk, Jacek B, 2013. "Sensitivity of cautious-relaxed investment policies to target variation," Working Paper Series 18792, Victoria University of Wellington, School of Economics and Finance.
  • Handle: RePEc:vuw:vuwecf:18792
    as

    Download full text from publisher

    File URL: https://ir.wgtn.ac.nz/handle/123456789/18792
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Alistair Windsor & Jacek B. Krawczyk, 1997. "A Matlab Package for Approximating the Solution to a Continuous- Time Stochastic Optimal Control Problem," Computational Economics 9710002, University Library of Munich, Germany.
    2. Patrick L. Brockett & Yehuda Kahane, 1992. "Risk, Return, Skewness and Preference," Management Science, INFORMS, vol. 38(6), pages 851-866, June.
    3. Yiu, K. F. C., 2004. "Optimal portfolios under a value-at-risk constraint," Journal of Economic Dynamics and Control, Elsevier, vol. 28(7), pages 1317-1334, April.
    4. Tversky, Amos & Kahneman, Daniel, 1992. "Advances in Prospect Theory: Cumulative Representation of Uncertainty," Journal of Risk and Uncertainty, Springer, vol. 5(4), pages 297-323, October.
    5. Bali, Turan G. & Cakici, Nusret & Whitelaw, Robert F., 2011. "Maxing out: Stocks as lotteries and the cross-section of expected returns," Journal of Financial Economics, Elsevier, vol. 99(2), pages 427-446, February.
    6. Arjan B. Berkelaar & Roy Kouwenberg & Thierry Post, 2004. "Optimal Portfolio Choice under Loss Aversion," The Review of Economics and Statistics, MIT Press, vol. 86(4), pages 973-987, November.
    7. Nicholas Barberis & Ming Huang, 2008. "Stocks as Lotteries: The Implications of Probability Weighting for Security Prices," American Economic Review, American Economic Association, vol. 98(5), pages 2066-2100, December.
    8. Merton, Robert C., 1971. "Optimum consumption and portfolio rules in a continuous-time model," Journal of Economic Theory, Elsevier, vol. 3(4), pages 373-413, December.
    9. Dierkes, Maik & Erner, Carsten & Zeisberger, Stefan, 2010. "Investment horizon and the attractiveness of investment strategies: A behavioral approach," Journal of Banking & Finance, Elsevier, vol. 34(5), pages 1032-1046, May.
    10. Azzato, Jeffrey & Krawczyk, Jacek B & Sissons, Christopher, 2011. "On loss-avoiding lump-sum pension optimization with contingent targets," Working Paper Series 18552, Victoria University of Wellington, School of Economics and Finance.
    11. Stanley R. Pliska, 1986. "A Stochastic Calculus Model of Continuous Trading: Optimal Portfolios," Mathematics of Operations Research, INFORMS, vol. 11(2), pages 371-382, May.
    12. Cairns, Andrew, 2000. "Some Notes on the Dynamics and Optimal Control of Stochastic Pension Fund Models in Continuous Time," ASTIN Bulletin, Cambridge University Press, vol. 30(1), pages 19-55, May.
    13. Azzato, Jeffrey & Krawczyk, Jacek B & Sissons, Christopher, 2011. "On loss-avoiding lump-sum pension optimization with contingent targets," Working Paper Series 1532, Victoria University of Wellington, School of Economics and Finance.
    14. W Henry Chiu, 2010. "Skewness Preference, Risk Taking and Expected Utility Maximisation," The Geneva Risk and Insurance Review, Palgrave Macmillan;International Association for the Study of Insurance Economics (The Geneva Association), vol. 35(2), pages 108-129, December.
    15. Erik Bogentoft & H. Edwin Romeijn & Stanislav Uryasev, 2001. "Asset/Liability Management for Pension Funds Using CVaR Constraints," Journal of Risk Finance, Emerald Group Publishing Limited, vol. 3(1), pages 57-71, April.
    16. Daniel G. Goldstein & Eric J. Johnson & William F. Sharpe, 2008. "Choosing Outcomes versus Choosing Products: Consumer-Focused Retirement Investment Advice," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 35(3), pages 440-456, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Foster, Jarred & Krawczyk, Jacek B, 2013. "Sensitivity of cautious-relaxed investment policies to target variation," Working Paper Series 2972, Victoria University of Wellington, School of Economics and Finance.
    2. Jacek B Krawczyk, 2015. "Delivering Left-Skewed Portfolio Payoff Distributions in the Presence of Transaction Costs," Risks, MDPI, vol. 3(3), pages 1-20, August.
    3. Foster, Jarred, 2011. "Target variation in a loss avoiding pension fund problem," MPRA Paper 36177, University Library of Munich, Germany.
    4. Azzato, Jeffrey & Krawczyk, Jacek B & Sissons, Christopher, 2011. "On loss-avoiding lump-sum pension optimization with contingent targets," Working Paper Series 18552, Victoria University of Wellington, School of Economics and Finance.
    5. Marcos Escobar-Anel & Michel Kschonnek & Rudi Zagst, 2022. "Portfolio optimization: not necessarily concave utility and constraints on wealth and allocation," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 95(1), pages 101-140, February.
    6. Bernard, Carole & Chen, Jit Seng & Vanduffel, Steven, 2015. "Rationalizing investors’ choices," Journal of Mathematical Economics, Elsevier, vol. 59(C), pages 10-23.
    7. Servaas van Bilsen & Roger J. A. Laeven & Theo E. Nijman, 2020. "Consumption and Portfolio Choice Under Loss Aversion and Endogenous Updating of the Reference Level," Management Science, INFORMS, vol. 66(9), pages 3927-3955, September.
    8. Matteo Benuzzi & Matteo Ploner, 2024. "Skewness-seeking behavior and financial investments," Annals of Finance, Springer, vol. 20(1), pages 129-165, March.
    9. Curatola, Giuliano, 2016. "Optimal consumption and portfolio choice with loss aversion," SAFE Working Paper Series 130, Leibniz Institute for Financial Research SAFE.
    10. Chen, An & Vellekoop, Michel, 2017. "Optimal investment and consumption when allowing terminal debt," European Journal of Operational Research, Elsevier, vol. 258(1), pages 385-397.
    11. Azzato, Jeffrey & Krawczyk, Jacek B & Sissons, Christopher, 2011. "On loss-avoiding lump-sum pension optimization with contingent targets," Working Paper Series 1532, Victoria University of Wellington, School of Economics and Finance.
    12. van Bilsen, Servaas & Laeven, Roger J.A., 2020. "Dynamic consumption and portfolio choice under prospect theory," Insurance: Mathematics and Economics, Elsevier, vol. 91(C), pages 224-237.
    13. Ebert, Sebastian, 2015. "On skewed risks in economic models and experiments," Journal of Economic Behavior & Organization, Elsevier, vol. 112(C), pages 85-97.
    14. Curatola, Giuliano, 2017. "Optimal portfolio choice with loss aversion over consumption," The Quarterly Review of Economics and Finance, Elsevier, vol. 66(C), pages 345-358.
    15. Mohrschladt, Hannes, 2021. "The ordering of historical returns and the cross-section of subsequent returns," Journal of Banking & Finance, Elsevier, vol. 125(C).
    16. Aissia, Dorsaf Ben, 2014. "IPO first-day returns: Skewness preference, investor sentiment and uncertainty underlying factors," Review of Financial Economics, Elsevier, vol. 23(3), pages 148-154.
    17. Døskeland, Trond M. & Nordahl, Helge A., 2008. "Optimal pension insurance design," Journal of Banking & Finance, Elsevier, vol. 32(3), pages 382-392, March.
    18. Francisco Gomes & Michael Haliassos & Tarun Ramadorai, 2021. "Household Finance," Journal of Economic Literature, American Economic Association, vol. 59(3), pages 919-1000, September.
    19. Jakusch, Sven Thorsten & Meyer, Steffen & Hackethal, Andreas, 2019. "Taming models of prospect theory in the wild? Estimation of Vlcek and Hens (2011)," SAFE Working Paper Series 146, Leibniz Institute for Financial Research SAFE, revised 2019.
    20. Stephen G Dimmock & Roy Kouwenberg & Olivia S Mitchell & Kim Peijnenburg, 2021. "Household Portfolio Underdiversification and Probability Weighting: Evidence from the Field," The Review of Financial Studies, Society for Financial Studies, vol. 34(9), pages 4524-4563.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:vuw:vuwecf:18792. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Library Technology Services (email available below). General contact details of provider: https://edirc.repec.org/data/egvuwnz.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.