IDEAS home Printed from https://ideas.repec.org/p/ven/wpaper/202514.html
   My bibliography  Save this paper

Bayesian Outlier Detection for Matrix–variate Models

Author

Listed:
  • Monica Billio

    (Ca’ Foscari University of Venice; Venice centre in Economic and Risk Analytics)

  • Roberto Casarin

    (European Centre for Living Technology; Venice centre in Economic and Risk Analytics)

  • Fausto Corradin

    (Ca’ Foscari University of Venice)

  • Antonio Peruzzi

    (Ca’ Foscari University of Venice)

Abstract

Bayes Factor (BF) is one of the tools used in Bayesian analysis for model selection. The predictive BF finds application in detecting outliers, which are relevant sources of estimation and forecast errors. An efficient framework for outlier detection is provided and purposely designed for large multidimensional datasets. Online detection and analytical tractability guarantee the procedure's efficiency. The proposed sequential Bayesian monitoring extends the univariate setup to a matrix–variate one. Prior perturbation based on power discounting is applied to obtain tractable predictive BFs. This way, computationally intensive procedures used in Bayesian Analysis are not required. The conditions leading to inconclusive responses in outlier identification are derived, and some robust approaches are proposed that exploit the predictive BF's variability to improve the standard discounting method. The effectiveness of the procedure is studied using simulated data. An illustration is provided through applications to relevant benchmark datasets from macroeconomics and finance.

Suggested Citation

  • Monica Billio & Roberto Casarin & Fausto Corradin & Antonio Peruzzi, 2025. "Bayesian Outlier Detection for Matrix–variate Models," Working Papers 2025: 14, Department of Economics, University of Venice "Ca' Foscari".
  • Handle: RePEc:ven:wpaper:2025:14
    as

    Download full text from publisher

    File URL: https://www.unive.it/web/fileadmin/user_upload/dipartimenti/DEC/doc/Pubblicazioni_scientifiche/working_papers/2025/WP_DSE_billio_casarin_corradin_peruzzi_14_25.pdf
    File Function: First version, anno
    Download Restriction: no
    ---><---

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    JEL classification:

    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • E31 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Price Level; Inflation; Deflation
    • F10 - International Economics - - Trade - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ven:wpaper:2025:14. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sassano Sonia (email available below). General contact details of provider: https://edirc.repec.org/data/dsvenit.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.