IDEAS home Printed from https://ideas.repec.org/p/uts/wpaper/130.html
   My bibliography  Save this paper

Factors Affecting the Probability of Bankruptcy

Author

Listed:
  • Maurice Peat

    (Discipline of Finance, University of Sydney)

Abstract

The majority of classification models developed have used a pool of financial ratios combined with statistical variable selection techniques to maximise the accuracy of the classifier being employed. Rather than follow an "ad hoc" variable selection process, this paper seeks to provide an economic basis for the selection of variables for inclusion in bankruptcy models, which are based on accounting information. Variables which occur in bankruptcy probability expressions derived from the solution of an stochastic optimising model for a firm are 'proxied' by variables constructed from financial statement data. The random nature of the life time of a single firm provides the rationale for the use of duration or hazard-based statistical methods in the validation of the derived bankruptcy probability expressions. The Cox (1972) proportional hazards model is used to estimate the coefficients and standard errors that are required for the validation of the derived bankruptcy probability expressions. Results of the validation exercise confirm that the variables included in the empirical hazard formulation behave in a way that is consistent with the model of the firm.

Suggested Citation

  • Maurice Peat, 2003. "Factors Affecting the Probability of Bankruptcy," Working Paper Series 130, Finance Discipline Group, UTS Business School, University of Technology, Sydney.
  • Handle: RePEc:uts:wpaper:130
    as

    Download full text from publisher

    File URL: http://www.finance.uts.edu.au/research/wpapers/wp130.pdf
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Lennox, Clive, 1999. "Identifying failing companies: a re-evaluation of the logit, probit and DA approaches," Journal of Economics and Business, Elsevier, vol. 51(4), pages 347-364, July.
    2. Scott, James, 1981. "The probability of bankruptcy: A comparison of empirical predictions and theoretical models," Journal of Banking & Finance, Elsevier, vol. 5(3), pages 317-344, September.
    3. repec:bla:joares:v:18:y:1980:i:1:p:109-131 is not listed on IDEAS
    4. Mossman, Charles E, et al, 1998. "An Empirical Comparison of Bankruptcy Models," The Financial Review, Eastern Finance Association, vol. 33(2), pages 35-53, May.
    5. Pinches, George E & Mingo, Kent A & Caruthers, J Kent, 1973. "The Stability of Financial Patterns in Industrial Organizations," Journal of Finance, American Finance Association, vol. 28(2), pages 389-396, May.
    6. Grice, John Stephen & Ingram, Robert W., 2001. "Tests of the generalizability of Altman's bankruptcy prediction model," Journal of Business Research, Elsevier, vol. 54(1), pages 53-61, October.
    7. Altman, Edward I. & Haldeman, Robert G. & Narayanan, P., 1977. "ZETATM analysis A new model to identify bankruptcy risk of corporations," Journal of Banking & Finance, Elsevier, vol. 1(1), pages 29-54, June.
    8. Shumway, Tyler, 2001. "Forecasting Bankruptcy More Accurately: A Simple Hazard Model," The Journal of Business, University of Chicago Press, vol. 74(1), pages 101-124, January.
    9. Maurice Peat, 2001. "Bankruptcy Probability: A Theoretical and Empirical Examination," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 20.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Antonio Blanco-Oliver & Ana Irimia-Dieguez & María Oliver-Alfonso & Nicholas Wilson, 2015. "Systemic Sovereign Risk and Asset Prices: Evidence from the CDS Market, Stressed European Economies and Nonlinear Causality Tests," Czech Journal of Economics and Finance (Finance a uver), Charles University Prague, Faculty of Social Sciences, vol. 65(2), pages 144-166, April.
    2. Carlos Serrano-Cinca & Yolanda Fuertes-Callén & Begoña Gutiérrez-Nieto & Beatriz Cuellar-Fernández, 2014. "Path modelling to bankruptcy: causes and symptoms of the banking crisis," Applied Economics, Taylor & Francis Journals, vol. 46(31), pages 3798-3811, November.
    3. David Johnstone, 2007. "Discussion of Altman and Sabato," Abacus, Accounting Foundation, University of Sydney, vol. 43(3), pages 358-362.
    4. Bhimani, Alnoor & Gulamhussen, Mohamed Azzim & Lopes, Samuel Da-Rocha, 2010. "Accounting and non-accounting determinants of default: An analysis of privately-held firms," Journal of Accounting and Public Policy, Elsevier, vol. 29(6), pages 517-532, November.
    5. Maria H. Kim & Graham Partington, 2015. "Dynamic forecasts of financial distress of Australian firms," Australian Journal of Management, Australian School of Business, vol. 40(1), pages 135-160, February.
    6. Kenth Skogsvik, 2007. "Discussion of Peat," Abacus, Accounting Foundation, University of Sydney, vol. 43(3), pages 325-331.
    7. James Routledge & David Morrison, 2012. "Insolvency administration as a strategic response to financial distress," Australian Journal of Management, Australian School of Business, vol. 37(3), pages 441-459, December.
    8. Sumon Bhaumik & Pranab Kumar Das & Subal C. Kumbhakar, 2011. "Firm Investment & Credit Constraints in India, 1997 ??? 2006: A stochastic frontier approach," William Davidson Institute Working Papers Series wp1010, William Davidson Institute at the University of Michigan.
    9. Alessandro Zeli, 2014. "The financial distress indicators trend in Italy: an analysis of medium-size enterprises," Eurasian Economic Review, Springer;Eurasia Business and Economics Society, vol. 4(2), pages 199-221, December.
    10. Elizabeth Carson & Neil Fargher & Yuyu Zhang, 2016. "Trends in Auditor Reporting in Australia: A Synthesis and Opportunities for Research," Australian Accounting Review, CPA Australia, vol. 26(3), pages 226-242, September.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:uts:wpaper:130. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Duncan Ford) or (Marina Grazioli). General contact details of provider: http://edirc.repec.org/data/sfutsau.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.