IDEAS home Printed from https://ideas.repec.org/p/uts/ecowps/6.html
   My bibliography  Save this paper

Blind Stealing: Experience and Expertise in a Mixed-Strategy Poker Experiment

Author

Listed:

Abstract

We explore the role of experience in mixed-strategy games by comparing, for a stylized version of Texas Hold-em, the behavior of experts, who have extensive experience playing poker online, to the behavior of novices. We find significant differences. The initial frequencies with which players bet and call are closer to equilibrium for experts than novices. And, while the betting and calling frequencies of both types of subjects exhibit too much heterogeneity to be consistent with equilibrium play, the frequencies of experts exhibit less heterogeneity. We find evidence that the style of online play transfers from the field to the lab.

Suggested Citation

  • Matt Van Essen & John Wooders, 2013. "Blind Stealing: Experience and Expertise in a Mixed-Strategy Poker Experiment," Working Paper Series 6, Economics Discipline Group, UTS Business School, University of Technology, Sydney.
  • Handle: RePEc:uts:ecowps:6
    as

    Download full text from publisher

    File URL: http://www.uts.edu.au/sites/default/files/edg_wp6.pdff
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Erev, Ido & Roth, Alvin E, 1998. "Predicting How People Play Games: Reinforcement Learning in Experimental Games with Unique, Mixed Strategy Equilibria," American Economic Review, American Economic Association, vol. 88(4), pages 848-881, September.
    2. repec:feb:artefa:0097 is not listed on IDEAS
    3. Van Essen, Matt & Wooders, John, 2015. "Blind stealing: Experience and expertise in a mixed-strategy poker experiment," Games and Economic Behavior, Elsevier, vol. 91(C), pages 186-206.
    4. Wooders, John & Shachat, Jason M., 2001. "On the Irrelevance of Risk Attitudes in Repeated Two-Outcome Games," Games and Economic Behavior, Elsevier, vol. 34(2), pages 342-363, February.
    5. Ignacio Palacios-Huerta & Oscar Volij, 2008. "Experientia Docet: Professionals Play Minimax in Laboratory Experiments," Econometrica, Econometric Society, vol. 76(1), pages 71-115, January.
    6. Richard Mckelvey & Thomas Palfrey, 1998. "Quantal Response Equilibria for Extensive Form Games," Experimental Economics, Springer;Economic Science Association, vol. 1(1), pages 9-41, June.
    7. Rodney Garratt & Mark Walker & John Wooders, 2012. "Behavior in second-price auctions by highly experienced eBay buyers and sellers," Experimental Economics, Springer;Economic Science Association, vol. 15(1), pages 44-57, March.
    8. Steven D. Levitt & John A. List & David H. Reiley, 2010. "What Happens in the Field Stays in the Field: Exploring Whether Professionals Play Minimax in Laboratory Experiments," Econometrica, Econometric Society, vol. 78(4), pages 1413-1434, July.
    9. Rapoport, Amnon & Erev, Ido & Abraham, Elizabeth V. & Olson, David E., 1997. "Randomization and Adaptive Learning in a Simplified Poker Game," Organizational Behavior and Human Decision Processes, Elsevier, vol. 69(1), pages 31-49, January.
    10. Mark Walker & John Wooders, 2001. "Minimax Play at Wimbledon," American Economic Review, American Economic Association, vol. 91(5), pages 1521-1538, December.
    11. John A. List, 2003. "Does Market Experience Eliminate Market Anomalies?," The Quarterly Journal of Economics, Oxford University Press, vol. 118(1), pages 41-71.
    12. repec:feb:artefa:0094 is not listed on IDEAS
    13. Steven Levitt & John List & David Reiley, 2010. "What happens in the field stays in the field: Professionals do not play minimax in laboratory experiments," Artefactual Field Experiments 00080, The Field Experiments Website.
    14. P.-A. Chiappori, 2002. "Testing Mixed-Strategy Equilibria When Players Are Heterogeneous: The Case of Penalty Kicks in Soccer," American Economic Review, American Economic Association, vol. 92(4), pages 1138-1151, September.
    15. Ignacio Palacios-Huerta, 2003. "Professionals Play Minimax," Review of Economic Studies, Oxford University Press, vol. 70(2), pages 395-415.
    16. Robert W. Rosenthal & Jason Shachat & Mark Walker, 2003. "Hide and seek in Arizona," International Journal of Game Theory, Springer;Game Theory Society, vol. 32(2), pages 273-293, December.
    17. Steven D. Levitt & John A. List & Sally E. Sadoff, 2011. "Checkmate: Exploring Backward Induction among Chess Players," American Economic Review, American Economic Association, vol. 101(2), pages 975-990, April.
    18. David J. Cooper, 1999. "Gaming against Managers in Incentive Systems: Experimental Results with Chinese Students and Chinese Managers," American Economic Review, American Economic Association, vol. 89(4), pages 781-804, September.
    19. David Cooper & John Kagel & Qing Liang Gu & Wei Lo, 1999. "Gaming against managers in incentive systems: Experimental results with chinese students and chinese managers," Artefactual Field Experiments 00038, The Field Experiments Website.
    20. Jonathan E. Alevy & Michael S. Haigh & John A. List, 2007. "Information Cascades: Evidence from a Field Experiment with Financial Market Professionals," Journal of Finance, American Finance Association, vol. 62(1), pages 151-180, February.
    21. John Wooders, 2010. "Does Experience Teach? Professionals and Minimax Play in the Lab," Econometrica, Econometric Society, vol. 78(3), pages 1143-1154, May.
    22. repec:feb:framed:00135 is not listed on IDEAS
    23. David J. Cooper & John H. Kagel, 2009. "The Role of Context and Team Play in Cross-Game Learning," Journal of the European Economic Association, MIT Press, vol. 7(5), pages 1101-1139, September.
    24. Shachat, Jason M., 2002. "Mixed Strategy Play and the Minimax Hypothesis," Journal of Economic Theory, Elsevier, vol. 104(1), pages 189-226, May.
    25. Rapoport, Amnon & Boebel, Richard B., 1992. "Mixed strategies in strictly competitive games: A further test of the minimax hypothesis," Games and Economic Behavior, Elsevier, vol. 4(2), pages 261-283, April.
    26. Shih-Hsun Hsu & Chen-Ying Huang & Cheng-Tao Tang, 2007. "Minimax Play at Wimbledon: Comment," American Economic Review, American Economic Association, vol. 97(1), pages 517-523, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Geng, Sen & Peng, Yujia & Shachat, Jason & Zhong, Huizhen, 2015. "Adolescents, cognitive ability, and minimax play," Economics Letters, Elsevier, vol. 128(C), pages 54-58.
    2. Duffy, Sean & Naddeo, JJ & Owens, David & Smith, John, 2016. "Cognitive load and mixed strategies: On brains and minimax," MPRA Paper 71878, University Library of Munich, Germany.
    3. Van Essen, Matt & Wooders, John, 2015. "Blind stealing: Experience and expertise in a mixed-strategy poker experiment," Games and Economic Behavior, Elsevier, vol. 91(C), pages 186-206.
    4. Emara, Noha & Owens, David & Smith, John & Wilmer, Lisa, 2017. "Serial correlation in National Football League play calling and its effects on outcomes," Journal of Behavioral and Experimental Economics (formerly The Journal of Socio-Economics), Elsevier, vol. 69(C), pages 125-132.
    5. Emara, Noha & Owens, David & Smith, John & Wilmer, Lisa, 2014. "Minimax on the gridiron: Serial correlation and its effects on outcomes in the National Football League," MPRA Paper 58907, University Library of Munich, Germany.
    6. Yoshitaka Okano, 2017. "Team vs. Individual, Hypothesis Testing vs. Model Selection, and the Minimax Model," Working Papers SDES-2017-18, Kochi University of Technology, School of Economics and Management, revised Oct 2017.

    More about this item

    Keywords

    mixed-strategy Nash equilibrium; minimax; poker; experiment; expertise;

    JEL classification:

    • C72 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Noncooperative Games
    • C92 - Mathematical and Quantitative Methods - - Design of Experiments - - - Laboratory, Group Behavior
    • C93 - Mathematical and Quantitative Methods - - Design of Experiments - - - Field Experiments
    • D03 - Microeconomics - - General - - - Behavioral Microeconomics: Underlying Principles

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:uts:ecowps:6. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Duncan Ford). General contact details of provider: http://edirc.repec.org/data/edutsau.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.