IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Log in (now much improved!) to save this paper

From Agent-based models to network analysis (and return): the policy-making perspective

Listed author(s):

An important perspective use of Agent-based models (ABMs) is that of being employed as tools to support decision systems in policy-making, in the complex systems framework. Such models can be usefully employed at two different levels: to help in deciding (policy-maker level) and to empower the capabilities of people in evaluating the effectiveness of policies (citizen level). Consequently, the class of ABMs for policymaking needs to be both quite simple in its structure and highly sophisticated in its outcomes. The pursuing of simplicity and sophistication can be made more effective by applying network analysis to the emergent results. Actually, in today’s world the consequences of choices and decisions and their effects on society, and on its organization, are equally relevant. Considering the agent-based and network techniques together, we have a further important possibility. Since it is easier to have network data (i.e. social network data) than detailed behavioral individual information, we can try to understand the relationships between the dynamic changes of the networks emerging from agent-based models and the behavior of the agents. As we understand these connections, we can apply them to actual networks, to try to understand what the behavioral black boxes of real-world agents contain. We propose a simple basic structure where events, scheduled upon time, call upon agents to behave, to modify their context, and to create new structures of links among them. Events are organized as collections of small acts and steps. The metaphor is that of a recipe, i.e. a set of directions with a list of ingredients for making or preparing something, especially food (as defined in the American Heritage dictionary). Technically, recipes are sequences of numerical or alphanumerical codes, reported in vectors, and move from an agent to another determining the events and generating the edges of the emerging networks. A basic code will be shown, useful to manage possible applications in different fields: production, health-care scenarios, paper co-authorship, opinion spreading, etc.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.est.unito.it/do/home.pl/Download?doc=/allegati/wp2015dip/wp_7_2015.pdf
Download Restriction: no

Paper provided by University of Turin in its series Department of Economics and Statistics Cognetti de Martiis. Working Papers with number 201507.

as
in new window

Length: 21 pages
Date of creation: Jan 2015
Handle: RePEc:uto:dipeco:201507
Contact details of provider: Postal:
Lungo Dora Siena 100, I-10153 Torino

Phone: +39 011670 4406
Fax: +39 011670 3895
Web page: http://www.unito.it/

More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as
in new window


  1. Kirman, Alan P. & Vriend, Nicolaas J., 2001. "Evolving market structure: An ACE model of price dispersion and loyalty," Journal of Economic Dynamics and Control, Elsevier, vol. 25(3-4), pages 459-502, March.
  2. Roth, Camille, 2007. "Empiricism for descriptive social network models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 378(1), pages 53-58.
  3. Lynne Hamill & Nigel Gilbert, 2009. "Social Circles: A Simple Structure for Agent-Based Social Network Models," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 12(2), pages 1-3.
  4. Kydland, Finn E & Prescott, Edward C, 1977. "Rules Rather Than Discretion: The Inconsistency of Optimal Plans," Journal of Political Economy, University of Chicago Press, vol. 85(3), pages 473-491, June.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:uto:dipeco:201507. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Piero Cavaleri)

or (Marina Grazioli)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.